0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
Binomial Distribution based K-means for Graph Partitioning Approach in Partially Reconfigurable Computing system
نویسندگان :
Zahra Asgari
1
Maryam Sadat Mastoori
2
1- دانشگاه علم و صنعت ایران
2- دانشگاه علم و صنعت ایران
کلمات کلیدی :
Reconfigurable computing, Graph partitioning algorithms, Unsupervised clustering, K-means algorithm, Binomial Distribution based K-means, Bin packing
چکیده :
Graph partitioning algorithms have been utilized to execute complex applications, where there is no enough space to run the whole application once, like in limited reconfigurable computing resources. If we have found an “optimal” clustering of a data set, it can be proved that the optimal partitioning can be achieved. K-means based algorithms widely used to partition subjects where there is no information about the number of clusters. A vital issue in the mentioned method is how to define a good centroid, which has the principal role in “good” clustering. In this paper, we introduced a new way to determine purposive centroids, based on Binomial Distribution to reduce the risk of randomly seeds selection, Elbow Diagram to achieve the optimum number of clusters, and finally, Bin Packing to classify nodes in defined clusters with considering Utilization Factor (UF) due to the limited area of Run Space. The proposed algorithm, called Binomial Distribution based K-means (BDK), is compared with common graph partitioning algorithms like Simulated Annealing Algorithm (SA), Density K-means (DK), and a link elimination partitioning with different scenarios such as simple and complex applications. The concluding results show that the proposed algorithm decreases the error of partitioning by 24% compared to the other clustering techniques. On the other hand, the Quality Factor (QF) is increased 41% in this way. Execution Time (EX.T) to achieve the required number of clusters is reduced significantly.
لیست مقالات
لیست مقالات بایگانی شده
A New Low Noise 4-Gb/s Serial CMOS MPPM Modulator
Erfan Alasvand Andekah - Noushin Ghaderi - Mostafa Pour Sayahi
Synergy of Deep Learning and Artificial Potential Field Methods for Robot Path Planning in the Presence of Static and Dynamic Obstacles
Mohammad Amin Basiri - Shirin Chehelgami - Erfan Ashtari - Mehdi Tale Masouleh - Ahmad Kalhor
A model for probabilistic fault propagation with the approach of effective fanouts in the logic circuits
Esfandiar Esmaieli sartakhti - Yasser Sedaghat - Ali Peiravi
اینورتر چندسطحی منبع ولتاژ جدید با هدف کاهش سوئیچ برای سطوح بالا
علی سیفی - سید حسین حسینی - مهرداد طرقدار حق - مهران صباحی - مجید حسین پور
Design and Analysis of A Non-Isolated High gain DC-DC Converter with Single Power Switch
Amirreza Bahadori - Seyed Hossein Hosseini - Ebrahim Babaei - Saeed Danyali
LoRa-based Intelligent Helmet for Coal Miner Safety: Neural Network Prediction and BLE Location Tracking
Saba Pirahmadian - Sorin Yousefnia - Soheil Ganjefar
Wake-Sleep Learning in R-STDP-Based Spiking Neural Networks to Avoid Catastrophic Forgetting
Mehrdad Baradaran - Katayoon Kobraei - Saeed Reza Kheradpisheh
Differentiating Brain Connectivity Networks in ADHD and Normal Children using EEG
Roqaie Moqadam - Nazila Loghmani - Alireza Khorrami Moghaddam - Armin Allahverdy
Using the Artificial Bee Colony (ABC) Algorithm in Collaboration with the Fog Nodes in the Internet of Things Three-layer Architecture
Shakoor Vakilian - Seyed Vahid Moravvej - Ali Fanian
Design of Semi-transparent Perovskite Solar Cells with Antireflection Coatings
Kosar Sattarnasery - Mohammad Razaghi - Keyhan Hosseini - Mahsa Moradbeigi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4