0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Forecasting Crude Oil Prices using improved deep belief network (IDBN) and long-term short-term memory network (LSTM)
نویسندگان :
Mohammad Mahdi Lotfi Heravi
1
Mahsa Khorrampanah
2
Monireh Houshmand
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه بینالمللی امام رضا
3- دانشگاه بینالمللی امام رضا
کلمات کلیدی :
Crude oil price forecast،Deep learning model،Improved Deep Belief Network (IDBN)،Return Nervous Network (RNN)،Long-Term Memory Network (LSTM)
چکیده :
Historically, energy resources are of strategic importance for the economic growth and social welfare of any country. Therefore, predicting crude oil price fluctuations is an important issue. Because crude oil price changes are affected by a wide range of risk factors in crude oil markets, crude oil prices show more complex nonlinear behavior and create a higher level of risk for investors than in the past. With the popularity of the deep learning model in engineering, it has attracted significant research trends in economics and finance. In this dissertation, we propose a new method of predicting the combined price of deep-based crude oil to model nonlinear dynamics in changing the price of crude oil and predict its future change at a higher level of accuracy. The results of the experiments show that the superior performance of the model based on the proposed method against statistical article [3] is statistically significant. In general, we found that the combination of the IDBN or LSTM model lowered the MSE value to 4.65, which was 0.81% lower than the base article, indicating an improvement in prediction accuracy. Interestingly, the prediction accuracy of the basic article method is lower than the proposed combined method.
لیست مقالات
لیست مقالات بایگانی شده
یک روش اقتصادی برای تعیین مکان بهینه ریکلوزرها در فیدرهای توزیع شعاعی با هدف بهبود قابلیت اطمینان
محمودرضا شاکرمی - میثم دوستی زاده - هومن بسطامی - مهران امیری - ابراهیم شریفی پور - شمس الدین کمالوند
Gray Box High-Frequency Modeling of Transformer using Particle Swarm Optimization
Mehdi Shamsodini Lori - Mohammad Hamed Samimi - Jawad Faiz
Improving Artificial Neural Network Performance Using Hybrid Activation Function
Morteza Taheri - Sajad Haghzad Klidbary
A Novel Ultra Wide-Band Antenna for the Array with Shaped Beam Radiation Pattern
Shima Amirinalloo - Zahra Atlasbaf
Optimal Energy Management of EVs in intelligent parking lots with Considering solar panels
Noorallah Yavari - Fatemeh Jahanbani Ardakani - Alireza Sedighi Anaraki
Analyzing Large-scale PV Plant Controllers by Technical Performance Indices using MCS Method
Hooman Nasrazadani - Alireza Sedighi - Hossein Seifi
Error Correction Enhancement in SCL Decoding of Polar Codes Using LSTM Network
Fatemeh Alia - Bahareh Akhbari - Mahmoud Ahmadian Attari
Human Action Recognition in Still Images Using ConViT
Seyed Rohollah Hosseyni - Sanaz Seyedin - Hassan Taheri
A novel protection scheme for HVDC transmission lines based on DC-filter current and DC line current
Mohammad Amin Rezaei Gazik - Hossein Kazemi Karegar
انتخاب سبد سهام بهینه در بورس تهران با استفاده از تقریب تصادفی انحراف همزمان
زینب گدازگر
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3