0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Forecasting Crude Oil Prices using improved deep belief network (IDBN) and long-term short-term memory network (LSTM)
نویسندگان :
Mohammad Mahdi Lotfi Heravi
1
Mahsa Khorrampanah
2
Monireh Houshmand
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه بینالمللی امام رضا
3- دانشگاه بینالمللی امام رضا
کلمات کلیدی :
Crude oil price forecast،Deep learning model،Improved Deep Belief Network (IDBN)،Return Nervous Network (RNN)،Long-Term Memory Network (LSTM)
چکیده :
Historically, energy resources are of strategic importance for the economic growth and social welfare of any country. Therefore, predicting crude oil price fluctuations is an important issue. Because crude oil price changes are affected by a wide range of risk factors in crude oil markets, crude oil prices show more complex nonlinear behavior and create a higher level of risk for investors than in the past. With the popularity of the deep learning model in engineering, it has attracted significant research trends in economics and finance. In this dissertation, we propose a new method of predicting the combined price of deep-based crude oil to model nonlinear dynamics in changing the price of crude oil and predict its future change at a higher level of accuracy. The results of the experiments show that the superior performance of the model based on the proposed method against statistical article [3] is statistically significant. In general, we found that the combination of the IDBN or LSTM model lowered the MSE value to 4.65, which was 0.81% lower than the base article, indicating an improvement in prediction accuracy. Interestingly, the prediction accuracy of the basic article method is lower than the proposed combined method.
لیست مقالات
لیست مقالات بایگانی شده
High-Efficiency Soft-Switched Quadratic Ultra-High Step-Up DC-DC Converter with Low Voltage Stress on Semiconductors
Ali Nadermohammadi - Ali Seifi - Hamed Abdi - Pouya Abolhassani - Seyed Hossein Hosseini - Ebrahim Babaei
A High Gain, High IIP3, Perfect Input Matching, Programmable Gain LNA in CMOS Technology
Amirhossein Tajik - Seyedali Samareh Taherinasab - Samad Sheikhaei
مدل سازی و شبیه سازی جداکننده پرتو کوانتومی و تداخل گر ماخ زندر کوانتومی
محمد جواد شریفی
بررسی تأثیر اجرای سازوکارهای بهره وری انرژی بر ظرفیت سنجی اقتصادی سیستم تأمین برق تجدیدپذیر برای ایستگاه های پایه مخابرات موبایل
بهروز عظیمی امینی - وحید محتشمی - حسین ابوترابی زارچی
The Use of NSGA-2 for Optimal Placement and Management of Renewable Energy Sources When Considering Network Uncertainty and Fault Current Limiters
Ali Akbar Farahani - Seyed Hossein Hesamedin Sadeghi
Design and Modeling of Graphene Based Electro-absorption Modulator Integrated with Hybrid Plasmonic Waveguides
Hadi Soofi - Shima Karkon Bagheri - Hamid Vahed
Contextual Based Locality Preserving Projection for Classification of SAR Images with Multiple Polarizations
Maryam Imani
Generation of orbital angular momentum modes via SSPP leaky-wave antenna based on holography technique
Sajjad Zohrevand - Nader Komjani
مدلسازی ابرشبکههای AlxGa1-xAs)m/(GaAs)n) با استفاده از روش Empirical Tight-Binding
متینه سادات حسینی قیداری - وحیدرضا یزدان پناه
Automotive radar target classification using micro-Doppler features
Amin Aghatabarroodbary - Mohammad Hassan Bastani - Fereidoon Behnia
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4