0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Forecasting Crude Oil Prices using improved deep belief network (IDBN) and long-term short-term memory network (LSTM)
نویسندگان :
Mohammad Mahdi Lotfi Heravi
1
Mahsa Khorrampanah
2
Monireh Houshmand
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه بینالمللی امام رضا
3- دانشگاه بینالمللی امام رضا
کلمات کلیدی :
Crude oil price forecast،Deep learning model،Improved Deep Belief Network (IDBN)،Return Nervous Network (RNN)،Long-Term Memory Network (LSTM)
چکیده :
Historically, energy resources are of strategic importance for the economic growth and social welfare of any country. Therefore, predicting crude oil price fluctuations is an important issue. Because crude oil price changes are affected by a wide range of risk factors in crude oil markets, crude oil prices show more complex nonlinear behavior and create a higher level of risk for investors than in the past. With the popularity of the deep learning model in engineering, it has attracted significant research trends in economics and finance. In this dissertation, we propose a new method of predicting the combined price of deep-based crude oil to model nonlinear dynamics in changing the price of crude oil and predict its future change at a higher level of accuracy. The results of the experiments show that the superior performance of the model based on the proposed method against statistical article [3] is statistically significant. In general, we found that the combination of the IDBN or LSTM model lowered the MSE value to 4.65, which was 0.81% lower than the base article, indicating an improvement in prediction accuracy. Interestingly, the prediction accuracy of the basic article method is lower than the proposed combined method.
لیست مقالات
لیست مقالات بایگانی شده
امکان استفاده از پلی آنیلین دوبعدیC3N به عنوان آشکار سازِ گاز استالدهیدِ بازدم در دستگاه های تشخیصِ غیر تهاجمیِ سرطان ریه: مطالعه اصل اولیه
محمد حسین امیدواری - حامد مهدوی نژاد - رزا صفایی اسدآبادی - محمدحسین شیخی
A Transformerless Single-Switch DC-DC Boost Converter Suitable for Renewable Energy Applications
Saed Mahmoud Alilou - Sasan Ahmadi - Mohammad Maalandish - Seyed Hossein Hosseini
Nonlinear Observer Design via Emulation Method for Sampled-data Teleoperation Systems
Ali Firouzi Abriz - Amir Aminzadeh Ghavifekr - Ashkan Safari
A 5kW Bidirectional Isolated On-Board EV Battery Charger Using Hybrid PFC/Inverter
Amir Hossein Dabbagh - Hamed Arvani - Ebrahim Afjei
A New Optimal Design of a Solar Power Plant On The Rooftop of Bovisa Train Station in Milan
Omid Nasirkhani - Mohsen Tamaddon
مشاهدهپذیری در فرآیندهای گراف محدود باند بدونجهت و جهتدار با استفاده از تعداد محدودی از مشاهدات
حمیدرضا خسرویان - محمود کریمی
PCG Denoising using AR-based Kalman Filter
Mohammad Sadegh Nazemi - Hesam Hakimnejad - Zohreh Azimifar
Improving CycleGAN-VC2 Voice Conversion by Learning MCD-Based Evaluation and Optimization
Majid Behdad - Davood Gharavian
Design and Demonstration of a Novel Microfluidic Channel for Trapping Circulating Tumor Cells with Magnetophoresis
Atin Bakhshi - Seyed Ehsan Hosseininasab - Vahid Ghafouri - Mehdi Rahmanian - Majid Badiei Rostami
مدل سازی فشرده و شبیه سازی گذار عایق به هادی در افزاره مات مبتنی بر VO2
پرناز عباسی - مجید شالچیان
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0