0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A novel approach for recommender systems based on query likelihood and sentiment analysis
نویسندگان :
Mohammadreza Soltaninezhad
1
Alireza Basiri
2
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Recommender System،Collaborative Filtering،Query Likelihood Model،Sentiment Analysis
چکیده :
Collaborative Filtering, a widely used approach in recommendation systems, frequently encounters significant limitations, including its incapacity to analyze textual material, sensitivity to sparse datasets, and challenges in understanding complex user preferences. To address these challenges, this paper introduces a novel methodology that leverages Query Likelihood Models and Sentiment Analysis to enhance recommendation accuracy. Query likelihood provides a probabilistic framework for modeling user preferences as queries and item reviews as documents, offering a way to combine textual data in the recommendation process. Sentiment analysis improves performance by quantifying the sentiment of review texts, weighting key words based on their significance to user contentment. Sentiment scores are obtained using a Bi-LSTM sentiment analysis model and incorporated into the QLM framework. The system considers sentiment-weighted keywords extracted from user reviews as user queries and builds item documents by aggregating their related reviews. These sentiment scores assist in modifying the log-likelihood calculations, which are then normalized and scaled to predict final ratings. We use the Amazon Food Reviews dataset for evaluations; our experiment results indicate that the novel proposed model, which is a combination of the query likelihood model with sentiment-weighted keywords and traditional collaborative filtering, outperformed the traditional collaborative filtering model across nearly all evaluation metrics. Thus, the proposed method offers a scalable and interpretable framework for improving the accuracy of Recommendation Systems.
لیست مقالات
لیست مقالات بایگانی شده
An Investigation on Transfer Learning for Classification of COVID-19 Chest X-Ray Images with Pre-trained Convolutional-based Architecture
Mobina Abdoli Nemati - ََAmirreza Baba Ahmadi
Direct model reference adaptive control for depth of hypnosis in anesthesia
Raha Rahimi - Farzaneh Shayegh - Marzieh Kamali
تشخیص حرکت دست با تکنیک ORB و شبکه عصبی پیچشی
مهین مقبلی - فرحناز مهنا - پوریا جعفری
طراحی و بررسی یک اینورتر چند سطحی جدید با کاهش تعداد ادوات قدرت به کار گرفته شده
حسین جعفری - داریوش نظرپور - سجاد گلشن نواز - ابراهیم بابائی
H_∞ Robust Constrained Control of Fuzzy-based Continuous-Time Nonlinear Systems
Mohsen Farbood - Mokhtar Shasadeghi - Taher Niknam - Behrouz Safarinejadian
بکارگیری تکنیک کنترل مقاوم جهت طراحی مسیر حرکت خودرو در مانورهای اضطراری ممانعت از برخورد
محمد امین قماشی - رضا کاظمی
Instantaneous Blind Audio Source Separation Using Characteristic Function of Heavy-Tailed Distributions
Kamran Rajabi - Mohammadreza Hassannejad Bibalan - Neda Faraji
Distributed Energy Management of Large-Scale Microgrids Using Predictive Control
Hamid Reza Babaei Ghazvini - Mahsa Ghavami - Mohammad Haeri
بهینه سازی تزویج فیبر نوری باریک شده و موجبر نوری بر بستر پلیمر
مهتاب حسینعلی زاده - مونا ثریا - غلام محمد پارسا نسب - شکراله کریمیان
Wideband Rat-race Hybrid Coupler Using Ridge Gap Waveguide Technology
Zahra Akhoondmahdi - Ahmad Bakhtafrouz
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3