0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A novel approach for recommender systems based on query likelihood and sentiment analysis
نویسندگان :
Mohammadreza Soltaninezhad
1
Alireza Basiri
2
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Recommender System،Collaborative Filtering،Query Likelihood Model،Sentiment Analysis
چکیده :
Collaborative Filtering, a widely used approach in recommendation systems, frequently encounters significant limitations, including its incapacity to analyze textual material, sensitivity to sparse datasets, and challenges in understanding complex user preferences. To address these challenges, this paper introduces a novel methodology that leverages Query Likelihood Models and Sentiment Analysis to enhance recommendation accuracy. Query likelihood provides a probabilistic framework for modeling user preferences as queries and item reviews as documents, offering a way to combine textual data in the recommendation process. Sentiment analysis improves performance by quantifying the sentiment of review texts, weighting key words based on their significance to user contentment. Sentiment scores are obtained using a Bi-LSTM sentiment analysis model and incorporated into the QLM framework. The system considers sentiment-weighted keywords extracted from user reviews as user queries and builds item documents by aggregating their related reviews. These sentiment scores assist in modifying the log-likelihood calculations, which are then normalized and scaled to predict final ratings. We use the Amazon Food Reviews dataset for evaluations; our experiment results indicate that the novel proposed model, which is a combination of the query likelihood model with sentiment-weighted keywords and traditional collaborative filtering, outperformed the traditional collaborative filtering model across nearly all evaluation metrics. Thus, the proposed method offers a scalable and interpretable framework for improving the accuracy of Recommendation Systems.
لیست مقالات
لیست مقالات بایگانی شده
Optimal Control of Rectangular Singular Systems
Masoud Shafiee
طراحی سازه ی الکترودی بهینه جهت انجام آزمایشات امپدانس متری سلولی و غیر سلولی
علی منفردی - نسرین هاشمی - مهرداد ساویز
Observer-Based Control for impulsive switched systems with Uncertain inputs
Soheil Sheikh ahmadi - Farzad Hashemzadeh - Mohammad Ali Badamchizadeh
طبقهبندی تصاویر سلولی پاپ اسمیر مبتنی بر الگوریتمهای ترتیبی یادگیری جمعی و شبکههای عمیق استخراج ویژگی
زهرا کمالی - محمدصادق هل فروش - کامران کاظمی - مژگان اکبرزاده
E-RESO: An Enhanced Time Redundancy-based Error Detection Approach for Arithmetic Operations
Sina Shahoveisi - Athena Abdi
Distributed Deep Reinforcement Learning for Radio Resource Management in O-RAN
Ahmad Ahmadi Siahpoush - Vahid Shah-Mansouri
Transfer learning using deep convolutional neural network for predicting dementia severity
Vahid Asayesh - Mehdi Dehghani - Majid Torabi Nikjeh - Sepideh Akhtari khosrowshahi
تخمین افسردگی مبتنی بر صوت با استفاده از بانک فیلتر و شبکه عصبی ResNet
علی نیک خراسانی - محمدرضا اکبرزاده توتونچی - مجید غیورمبرهن
Optimal Placement of Of Maintenance Teams in Distribution Networks to Minimize Energy Not Supplied
Qasem Asadi - Ali Ashoornezhad - Hamid Falaghi - Maryam Ramezani
Design of a Controllable and State-observable MEMS Nonlinear Resonator Based on the Awl-shaped Serpentine Spring
Ehsan Ranjbar - Amirabolfazl Suratgar
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2