0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Learning-Based Routing Policy For Wireless Sensor Networks
نویسندگان :
Najim Halloum
1
Yousef Darmani
2
Ali Ahmadi
3
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
IoT،Reinforcement Learning،WSN،Q-Learning،Routing،Reliability،RPL،Load-balancing،Objective Function
چکیده :
The pervasive Internet of Things (IoT) technology applications take the quality of the service provided to another level. Wireless Sensor Network (WSN) is the sensing layer in IoT-based systems that collects data and sends it to a central component. On the other hand, IoT-WNSs have special characteristics in terms of lossy environment and resource-constrained devices. However, the next generation of the Internet of Things networks is expected to be large-scale networks with large amounts of data being transferred. In such IoT networks, the main issues come from the need for an efficient routing protocol that can provide an efficient forwarding mechanism in congestion-based scenarios. Here, the routing protocol for low-power and Lossy networks (RPL) is a standardized routing protocol for IoT-WSNs. With such conditions, RPL could suffer from reliability decreasing, control overhead and latency increasing. Reinforcement learning provides a methodology by which a system can improve its behavior to select upcoming actions efficiently by learning from previous interactions with the environment. In this study, a Reinforcement Learning-based load balancing-aware routing scheme will be proposed to build a reliable path for IoT-WSNs. To do so, a multi-metric reward function based on the Received Signal Strength Indicator and Buffer utilization metrics is designed to form the essential part of the next forwarder selection process using the Q-Learning algorithm. According to an evaluation using the Contiki OS / Cooja simulator in terms of control overhead, network latency, and packet delivery ratio, the proposed approach has demonstrated its efficiency against the counterparts.
لیست مقالات
لیست مقالات بایگانی شده
Intelligent Filter of $\mathcal{L}_{1}$ Adaptive Controller Using ANFIS System Optimized with Genetic Algorithm
Hossein Ahmadian - HeidarAli Talebi - Iman Sharifi
Numerical investigation of gain switching in Fano semiconductor lasers
Arash Hodaie - Hassan Kaatuzian - Aref Rasoulzadeh Zali
Millimeter-Wave Imaging System: A Brief Study on System Performance
Behnam Ghandi - Sobhan Dabidian - Sina Zeraatkar - Zahra Kavehvash
An SINR Maximization Approach for STAR-RIS-assisted Integrated Sensing and Communication Networks
Samira Arab Ameri - Kamal Mohamedpour - Mohammad Javad Azizipour
DRAU-Net: Double Residual Attention Mechanism for automatic MRI brain tumor segmentation
Mohammad Soltani gol - Morteza Fattahi - Hamid Soltanian zadeh - Samd Sheikhaei
Sensor Faults Diagnosis in T-S Fuzzy Discrete Descriptor Systems Using Design a New Unknown Input Observer
Masoud Shafiee - Amir Abolfazl Suratgar - Mehdi Mirshahi
Design and Analysis of a new Hybrid Switched Reluctance Motor for Achieving High Torque
Matin Rahimi - Seyed Hamid Shahalami - Esmaeil Fallah Choolabi
ردیابی اهداف کوچک مادون قرمز مبتنی بر فیلتر کالمن بهینهشده با الگوریتم نهنگ و ازدحام ذرات
نازنین بهمن جو - سعید خانکلانتری
مبدل DC/DC افزاینده شبهرزونانسی مبتنی بر ضربکنندهی ولتاژ ترکیبی با کلیدزنی نرم و بهرهی ولتاژ بالا
کوشا چوبداری عمران - رضا بیرانوند
Optimization of a three-phase Induction Motor for Electric Vehicles Based on Hook-Jews Optimization Method
Arash Mousaei - Naghi Rostami - Mohammad Bagher Bannae Sharifian
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2