0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Learning-Based Routing Policy For Wireless Sensor Networks
نویسندگان :
Najim Halloum
1
Yousef Darmani
2
Ali Ahmadi
3
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
IoT،Reinforcement Learning،WSN،Q-Learning،Routing،Reliability،RPL،Load-balancing،Objective Function
چکیده :
The pervasive Internet of Things (IoT) technology applications take the quality of the service provided to another level. Wireless Sensor Network (WSN) is the sensing layer in IoT-based systems that collects data and sends it to a central component. On the other hand, IoT-WNSs have special characteristics in terms of lossy environment and resource-constrained devices. However, the next generation of the Internet of Things networks is expected to be large-scale networks with large amounts of data being transferred. In such IoT networks, the main issues come from the need for an efficient routing protocol that can provide an efficient forwarding mechanism in congestion-based scenarios. Here, the routing protocol for low-power and Lossy networks (RPL) is a standardized routing protocol for IoT-WSNs. With such conditions, RPL could suffer from reliability decreasing, control overhead and latency increasing. Reinforcement learning provides a methodology by which a system can improve its behavior to select upcoming actions efficiently by learning from previous interactions with the environment. In this study, a Reinforcement Learning-based load balancing-aware routing scheme will be proposed to build a reliable path for IoT-WSNs. To do so, a multi-metric reward function based on the Received Signal Strength Indicator and Buffer utilization metrics is designed to form the essential part of the next forwarder selection process using the Q-Learning algorithm. According to an evaluation using the Contiki OS / Cooja simulator in terms of control overhead, network latency, and packet delivery ratio, the proposed approach has demonstrated its efficiency against the counterparts.
لیست مقالات
لیست مقالات بایگانی شده
Improving the Performance of Unified Power Quality Conditioner Using Interval Type 2 Fuzzy Control
Farzad Rastegar - Zohreh Paydar
طبقه بندی سکته مغزی در یک سیستم دو بعدی چند فرکانسی با استفاده از امواج مایکروویو و یادگیری عمیق
محسن مهرانیان - محمدسعید ماجدی - امیررضا عطاری
Using Convolutional Neural Networks for Sudden Cardiac Death prediction
Sara Tavazo - Farideh Ebrahimi
Super twisting sliding mode incorporated with USDE for tracking control of nonlinear robotic systems
Ahmadreza Fallahinezhad - Maryam Malekzadeh - Alireza Ariaei
Exploring Different Machine Learning-based Methods for Learning the Language of Shepna Stock Price
Zoreh Ansari - Jalal Raeisi Gahruei - Mansoor Khademi
Performance improvement of automated parking by considering road incline and wheel slippage
Ali Anisi - Moosa Ayati - Yassin Riyazi - Ali Asadian
Detecting Variance Changes in Alarm Systems Using Generalized Delay-timers
Zahra Sharifi - Iman Izadi - Jafar Ghaisari
Leader-Following H_∞ Fault-Tolerant Consensus of Nonlinear Multi-agent Systems with External Disturbances
Maryam Salimifard - Heidar Ali Talebi
Introducing a New Phase Realization Technique for Implementation of Broadband Reflectarray Antenna
Mahmood Rafaei-booket - Seyed Mostafa Mousavi
A New High Step-Up Quasi Z-Source DC-DC Converter Using Buffer and Switched Capacitor Techniques
Erfan Meshkizadeh - Ebrahim Afjei - Morteza Kheradmandi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3