0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Hand Movment Decoding from EEG Signals Using Kalman Filter with Parameters Estimated via Neural Networks and Least Squares Method
نویسندگان :
Pegah Khoshkavandi
1
Mohammad B Shamsollahi
2
Ali Motie Nasrabadi
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه شاهد تهران
کلمات کلیدی :
Brain-computer interfaces،Kalman filter،Multilayer perceptron،Electroencephalography
چکیده :
Brain-computer interfaces (BCIs) facilitate direct communication between the brain and external devices, offering transformative potential for individuals with motor disabilities. One of the main challenges in this area is the accurate interpretation of hand movements from non-invasive electroencephalographic (EEG) signals, which are often affected by inherent noise and complexity. This study explores the integration of a Kalman filter with a multilayer perceptron (MLP) to enhance the estimation of hand movement trajectories based on EEG signals. While the Kalman filter is commonly used for continuous motion decoding, its effectiveness hinges on the precise analysis of its parameters, particularly the transfer matrix. Traditionally, these parameters are calculated using the least squares method. In this work, we propose a hybrid approach in which the transition matrix \mathbit{F}_\mathbit{i} is dynamically estimated using an MLP, while the remaining parameters are obtained via the least squares method. Using a 5-fold cross-validation protocol on EEG data from three individuals, the hybrid approach consistently showed improved correlation values for motion estimation across all axes when compared to the traditional Kalman filter. Notably, the Z-axis exhibited the most significant improvements, indicating that the hybrid approach effectively addresses the limitations of the Kalman filter. These findings highlight the potential of combining neural networks models with classical filtering techniques to achieve more accurate and reliable motion decoding. This advancement offers promising opportunities for brain-computer interfaces (BCIs) in assistive and rehabilitation technologies.
لیست مقالات
لیست مقالات بایگانی شده
Swin Wavelet Super Resolution
Zahra Moammeri - Ahmad Mahmoudi-Aznaveh
Model Predictive Control for Optimal Drug Administration of Cancer Chemotherapy
Zahra Hosseinpour - Amirhossein Nikoofard - Erfan Nejabat
40Hz Auditory Entrainment Promotes Synchronization Between Frontal and Parietal Regions of the Brain
Mojtaba Lahijanian - Hamid Aghajan
Lane Change Decision Making Using Deep Reinforcement Learning
Pedram Lamei - Mohammad Haeri
طبقه بندی سکته مغزی در یک سیستم دو بعدی چند فرکانسی با استفاده از امواج مایکروویو و یادگیری عمیق
محسن مهرانیان - محمدسعید ماجدی - امیررضا عطاری
Study of Performance Characteristics of a Line-Start Synchronous Reluctance Motor Over its Synchronization Region
Ali Jamali-Fard - Mojtaba Mirsalim
Field Effect Phototransistor Based on Thin Film Ag2S Nanocrystals
Hossein Roshan - Mohammad Hossein Sheikhi
Adaptive synchronous switching of uncompensated open transmission lines Realizing the line’s Parameters, and the pre-arcing interval
Alireza Karimonnafs - Mehdi Vakilian
Cooperative Coverage Path Planning Using Q-Learning and Sarsa in Two Environments
Alireza Nezamzadeh - Hamed Jalaly Bidgoly - Marzieh Kamali
Machine Learning Approach for Retrieval of Complex Permittivity in Cavity Resonators
Kianoosh Kazemi - Gholamreza Moradi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0