0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Hand Movment Decoding from EEG Signals Using Kalman Filter with Parameters Estimated via Neural Networks and Least Squares Method
نویسندگان :
Pegah Khoshkavandi
1
Mohammad B Shamsollahi
2
Ali Motie Nasrabadi
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه شاهد تهران
کلمات کلیدی :
Brain-computer interfaces،Kalman filter،Multilayer perceptron،Electroencephalography
چکیده :
Brain-computer interfaces (BCIs) facilitate direct communication between the brain and external devices, offering transformative potential for individuals with motor disabilities. One of the main challenges in this area is the accurate interpretation of hand movements from non-invasive electroencephalographic (EEG) signals, which are often affected by inherent noise and complexity. This study explores the integration of a Kalman filter with a multilayer perceptron (MLP) to enhance the estimation of hand movement trajectories based on EEG signals. While the Kalman filter is commonly used for continuous motion decoding, its effectiveness hinges on the precise analysis of its parameters, particularly the transfer matrix. Traditionally, these parameters are calculated using the least squares method. In this work, we propose a hybrid approach in which the transition matrix \mathbit{F}_\mathbit{i} is dynamically estimated using an MLP, while the remaining parameters are obtained via the least squares method. Using a 5-fold cross-validation protocol on EEG data from three individuals, the hybrid approach consistently showed improved correlation values for motion estimation across all axes when compared to the traditional Kalman filter. Notably, the Z-axis exhibited the most significant improvements, indicating that the hybrid approach effectively addresses the limitations of the Kalman filter. These findings highlight the potential of combining neural networks models with classical filtering techniques to achieve more accurate and reliable motion decoding. This advancement offers promising opportunities for brain-computer interfaces (BCIs) in assistive and rehabilitation technologies.
لیست مقالات
لیست مقالات بایگانی شده
Outage and Sum-Rate Analysis for mCAP-NOMA in Visible Light Communication Under Users' Mobility
Amir Oshtoudan - Seyed Mohammad Sajad Sadough
Single-Item Fashion Recommender: Towards Cross-Domain Recommendations
Seyed Omid Mohammadi - Hossein Bodaghi - Ahmad Kalhor
Innovative MOEMS Biosensor for Hepatitis DNA Detection Utilizing an Optical Ring Resonator
Hossein Bahramian - Arash Yazdanpanah Goharrizi
A Novel UAV-enabled V2V Mobile Network: A Reinforcement Learning Approach
Hossein Mohammadi Firouzjaei - Javad Zeraatkar - Mehrdad Ardebilipour
کنترل دوز داروی بیماران مبتلا به لوسمی با استفاده از روشی نوین بر پایه یادگیری تقویتی عمیق
مریم افخمی - امین نوری
A Transformer-Based Model for Similar Fashion Image Retrieval with Image and Text Features
Zahra Sheykhvand - Milad Farzalizadeh - Majid Meghdadi
بهبود پردازش وفقی فضا-زمان (STAP) در سیستمهای رادار هوابرد با استفاده از الگوریتمهای آگاه به تنک بودن (Sparsity) سیستم
علی شیخیان - سارا میهن دوست - نعمت الله عزتی - احسان مصطفی پور
Job Title Prediction from Tweets Using Word Embedding and Deep Neural Networks
Shayan Vassef - Ramin Toosi - Mohammad Ali Akhaee
تخمین غلظت ید و زینان در یک نیروگاه هستهای با استفاده از فیلتر کالمن بیرد تحت شرایط مختلف توان راکتور
حسین زحمتکش - حسین الیاسی
Entanglement-Assisted Classical-Quantum Multiple Access Wiretap Channel: One-shot Achievable Rate Region
Hadi Aghaee - Bahareh Akhbari
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4