0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Hand Movment Decoding from EEG Signals Using Kalman Filter with Parameters Estimated via Neural Networks and Least Squares Method
نویسندگان :
Pegah Khoshkavandi
1
Mohammad B Shamsollahi
2
Ali Motie Nasrabadi
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه شاهد تهران
کلمات کلیدی :
Brain-computer interfaces،Kalman filter،Multilayer perceptron،Electroencephalography
چکیده :
Brain-computer interfaces (BCIs) facilitate direct communication between the brain and external devices, offering transformative potential for individuals with motor disabilities. One of the main challenges in this area is the accurate interpretation of hand movements from non-invasive electroencephalographic (EEG) signals, which are often affected by inherent noise and complexity. This study explores the integration of a Kalman filter with a multilayer perceptron (MLP) to enhance the estimation of hand movement trajectories based on EEG signals. While the Kalman filter is commonly used for continuous motion decoding, its effectiveness hinges on the precise analysis of its parameters, particularly the transfer matrix. Traditionally, these parameters are calculated using the least squares method. In this work, we propose a hybrid approach in which the transition matrix \mathbit{F}_\mathbit{i} is dynamically estimated using an MLP, while the remaining parameters are obtained via the least squares method. Using a 5-fold cross-validation protocol on EEG data from three individuals, the hybrid approach consistently showed improved correlation values for motion estimation across all axes when compared to the traditional Kalman filter. Notably, the Z-axis exhibited the most significant improvements, indicating that the hybrid approach effectively addresses the limitations of the Kalman filter. These findings highlight the potential of combining neural networks models with classical filtering techniques to achieve more accurate and reliable motion decoding. This advancement offers promising opportunities for brain-computer interfaces (BCIs) in assistive and rehabilitation technologies.
لیست مقالات
لیست مقالات بایگانی شده
ترکیب الگوریتم بهینهساز ازدحام ذرات و شبکه عصبی همگشتی رزنت در مدلسازی و طراحی سطوح انتخابگر فرکانس فراکتالی
امین مزروعی آبکنار - مجتبی مداح علی - مرضیه نصیریان
Identifying Influential Nodes in Complex Networks by Multiple Attributes Model
Shima Esfandiari - Mostafa Fakhrahmad
Impact of Particle Shape on Optical and Electrical Properties of Ultrathin Silicon Solar Cells
Sayyed Reza Mirnaziry - Mohammad Ali Shameli - Leila Yousefi
FGM Copula based Analysis of Outage Probability for Wireless Three-User Multiple Access Channel with Correlated Channel Coefficients
Mona Sadat Mohsenzadeh - Ghosheh Abed Hodtani
Design and simulation of an interleaved soft-switched CW-VM based boost converter for high power and high voltage applications
Soheil Hasani - Reza Beiranvand
پیاده سازی و بهبود عملکرد شبکه اینترنت اشیا سلولی بر بستر پروژه منبع باز OAI
سیدمحمدرضا طباطبایی نژاد - حسین خالقی بیزکی - سجاد پورسجادی
Sensitivity Analysis of Power Production and Efficiency in Shahid Mofateh Hamedan Power Plant: A Comparative Study of Operational Indicators
Mahdi Aliyari-Shoorehdeli - Aryan Isapour
A Bi-Level Attack-Defense Model for the Forecasting False Data Injection Attacks on the Integrated Energy Systems
Maryam Azimi - Hamed Delkhosh - Mahdi Ghaedi
A Multilevel Ac-Ac Converter with Input-series and Output-Parallel as Dynamic Voltage Restorer
Seyed mohsen Mortazavi - Reza Beiranvand
The change in Individual Alpha Frequency during Neurofeedback training
Maryam Dorvashi - Neda Behzadfar
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4