0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Hand Movment Decoding from EEG Signals Using Kalman Filter with Parameters Estimated via Neural Networks and Least Squares Method
نویسندگان :
Pegah Khoshkavandi
1
Mohammad B Shamsollahi
2
Ali Motie Nasrabadi
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه شاهد تهران
کلمات کلیدی :
Brain-computer interfaces،Kalman filter،Multilayer perceptron،Electroencephalography
چکیده :
Brain-computer interfaces (BCIs) facilitate direct communication between the brain and external devices, offering transformative potential for individuals with motor disabilities. One of the main challenges in this area is the accurate interpretation of hand movements from non-invasive electroencephalographic (EEG) signals, which are often affected by inherent noise and complexity. This study explores the integration of a Kalman filter with a multilayer perceptron (MLP) to enhance the estimation of hand movement trajectories based on EEG signals. While the Kalman filter is commonly used for continuous motion decoding, its effectiveness hinges on the precise analysis of its parameters, particularly the transfer matrix. Traditionally, these parameters are calculated using the least squares method. In this work, we propose a hybrid approach in which the transition matrix \mathbit{F}_\mathbit{i} is dynamically estimated using an MLP, while the remaining parameters are obtained via the least squares method. Using a 5-fold cross-validation protocol on EEG data from three individuals, the hybrid approach consistently showed improved correlation values for motion estimation across all axes when compared to the traditional Kalman filter. Notably, the Z-axis exhibited the most significant improvements, indicating that the hybrid approach effectively addresses the limitations of the Kalman filter. These findings highlight the potential of combining neural networks models with classical filtering techniques to achieve more accurate and reliable motion decoding. This advancement offers promising opportunities for brain-computer interfaces (BCIs) in assistive and rehabilitation technologies.
لیست مقالات
لیست مقالات بایگانی شده
Dual-Branch Cross-Parallel Transformer Model for Single-Channel Speech Enhancement
Mohammad Hakimkhah - Rahil Mahdian Toroghi - Hassan Zareian
Improved Homptopy Technique for MIMO signal Detection
Elaheh Ghaderi - Masoumeh Azghani
Design of an Optical Current Transformer for High-Voltage Gas-Insulated Switchgear-Part I: Focus on Optical Sensor Design
Reza Babaei - Asghar Akbari - Arash Moradi
Robust Wireless Power Transfer by Self-Oscillating Controlled Inverter and Double-D Pads
Alireza Eikani - Mohammad Amirkhani - Hossein Jafari - Hesamodin Abdoli - Sadegh Vaez-Zadeh - Ghasem Rezazadeh
A High Gain Transformerless DC-DC Boost Converter Using LCD Network: Design and Experimental Verification
Hamed Hokmali - Ebrahim Afjei
Fast Adapted Delay and Sum Reconstruction Algorithm in Circular Photoacoustic Tomography
Soheil Hakakzadeh - Seyed masood Mostafavi - Zahra Kavehvash
Automatic Classification of Parkinson’s Disease Using Best Parameters of Forward and Backward Walking
Atiye Riasi - Mehdi Delrobaei
مدلسازی ابرشبکههای AlxGa1-xAs)m/(GaAs)n) با استفاده از روش Empirical Tight-Binding
متینه سادات حسینی قیداری - وحیدرضا یزدان پناه
Accurate Methods for Automatic Detection of Characteristic Points in Electrocardiograms
Seyedeh Mersedeh Bagheri - Mohammad Pooyan
T-type L-2L De-Embedding Method for On-Wafer T-model Transmission Line Network
Milad Seyedi - Nasser Masoumi - Samad Sheikhaei
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0