0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Hand Movment Decoding from EEG Signals Using Kalman Filter with Parameters Estimated via Neural Networks and Least Squares Method
نویسندگان :
Pegah Khoshkavandi
1
Mohammad B Shamsollahi
2
Ali Motie Nasrabadi
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه شاهد تهران
کلمات کلیدی :
Brain-computer interfaces،Kalman filter،Multilayer perceptron،Electroencephalography
چکیده :
Brain-computer interfaces (BCIs) facilitate direct communication between the brain and external devices, offering transformative potential for individuals with motor disabilities. One of the main challenges in this area is the accurate interpretation of hand movements from non-invasive electroencephalographic (EEG) signals, which are often affected by inherent noise and complexity. This study explores the integration of a Kalman filter with a multilayer perceptron (MLP) to enhance the estimation of hand movement trajectories based on EEG signals. While the Kalman filter is commonly used for continuous motion decoding, its effectiveness hinges on the precise analysis of its parameters, particularly the transfer matrix. Traditionally, these parameters are calculated using the least squares method. In this work, we propose a hybrid approach in which the transition matrix \mathbit{F}_\mathbit{i} is dynamically estimated using an MLP, while the remaining parameters are obtained via the least squares method. Using a 5-fold cross-validation protocol on EEG data from three individuals, the hybrid approach consistently showed improved correlation values for motion estimation across all axes when compared to the traditional Kalman filter. Notably, the Z-axis exhibited the most significant improvements, indicating that the hybrid approach effectively addresses the limitations of the Kalman filter. These findings highlight the potential of combining neural networks models with classical filtering techniques to achieve more accurate and reliable motion decoding. This advancement offers promising opportunities for brain-computer interfaces (BCIs) in assistive and rehabilitation technologies.
لیست مقالات
لیست مقالات بایگانی شده
T-type L-2L De-Embedding Method for On-Wafer T-model Transmission Line Network
Milad Seyedi - Nasser Masoumi - Samad Sheikhaei
A novel wideband low profile Fabry-Perot cavity antenna using single-layer partially reflective surface
Mahtab Ghanbari - Bijan Abbasi arand - Maryam Hesari shermeh
Giant Optical Nonreciprocity with Magnetized Epsilon-Near-Zero Materials
Zahra Chamani - Abolghasem Zeidaabadi Nezhad - Mahyar Dehdast - Zaker Hossein Firouzeh
Deception Attack Detection and Resilient Control in Platoon of Smart Vehicles
Hassan Mokari - Elnaz Firouzmand - Iman Sharifi - Ali Doustmohammadi
A K-Band Ultra-Low-Power High-Linearity Down-Conversion Mixer in CMOS Technology
Kayvan Qolami - جواد یاوندحسنی
کاهش نویز و کلاتر در تصاویر رنگی داپلر اولترسوند
بهینا علیزاده - سید محمود سخایی
On the selection of superspreaders for advertising in science education using a new similarity measure
Sanaz Afsharian - Mohsen Heidari - Heidar Nosratzadeh - Mojgan Khalifeh
Mountain Gazelle Optimized PID Controller for a MIMO System with External Disturbance
Siavash Shirali - Hamoun Maleki - Hadi Delavari
Nonvolatile Quaternary Pre-Charged MRAM Cell Design based on Emerging Technologies
Motahareh BahmanAbadi - Abdolah Amirany - Mohammad Hossein Moaiyeri
Investigation of Li3P as Electrolyte and Lithium-ion conductor: An Ab-Initio Study
Keyvan Khosh Abady - ََamin Niksirat - Negar Karpourazar - Mahdi Pourfath
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2