0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Hand Movment Decoding from EEG Signals Using Kalman Filter with Parameters Estimated via Neural Networks and Least Squares Method
نویسندگان :
Pegah Khoshkavandi
1
Mohammad B Shamsollahi
2
Ali Motie Nasrabadi
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه شاهد تهران
کلمات کلیدی :
Brain-computer interfaces،Kalman filter،Multilayer perceptron،Electroencephalography
چکیده :
Brain-computer interfaces (BCIs) facilitate direct communication between the brain and external devices, offering transformative potential for individuals with motor disabilities. One of the main challenges in this area is the accurate interpretation of hand movements from non-invasive electroencephalographic (EEG) signals, which are often affected by inherent noise and complexity. This study explores the integration of a Kalman filter with a multilayer perceptron (MLP) to enhance the estimation of hand movement trajectories based on EEG signals. While the Kalman filter is commonly used for continuous motion decoding, its effectiveness hinges on the precise analysis of its parameters, particularly the transfer matrix. Traditionally, these parameters are calculated using the least squares method. In this work, we propose a hybrid approach in which the transition matrix \mathbit{F}_\mathbit{i} is dynamically estimated using an MLP, while the remaining parameters are obtained via the least squares method. Using a 5-fold cross-validation protocol on EEG data from three individuals, the hybrid approach consistently showed improved correlation values for motion estimation across all axes when compared to the traditional Kalman filter. Notably, the Z-axis exhibited the most significant improvements, indicating that the hybrid approach effectively addresses the limitations of the Kalman filter. These findings highlight the potential of combining neural networks models with classical filtering techniques to achieve more accurate and reliable motion decoding. This advancement offers promising opportunities for brain-computer interfaces (BCIs) in assistive and rehabilitation technologies.
لیست مقالات
لیست مقالات بایگانی شده
RCS Calculation of a Symmetrical Microstrip Array Using Discrete Bodies of Revolution Method
Hossein Mohammadzadeh - Abolghasem Zeidaabadi Nezhad - Zaker Hossein Firouzeh
Human detection and following by a mobile robot using YOLO structured convolutional neural network
Yasan Majidi - Amir Hossein Hassanabadi
A Novel Ultra Wide-Band Antenna for the Array with Shaped Beam Radiation Pattern
Shima Amirinalloo - Zahra Atlasbaf
Design and Parametric Study of Circular Polarized Electrically Small Archimedean Spiral PIFA Antenna for Biomedical Implants in ISM Band
Sina Saeedi - Arezoo Abdi - Farhad Ghorbani - Hadi Aliakbarian - Ramezan Ali Sadeghzadeh
Modeling of dielectrophoretic single-stage continuous separation of Escherichia coli K38 in a microfluidic channel
Saeed Saedy - Navid Alaei Sheini - Shahrzad Ajabi
Optimized ANFIS-based Control Design Using Genetic Algorithm to Obtain the Vaccination and Isolation Rates for the COVID-19
Zohreh Abbasi - Mohsen Shafieirad - Amir Hossein Amiri Mehra - Iman Zamani
Optimal Operation of Lithium-Ion Batteries Considering Degradation Cost in Vehicle-to-Grid Systems
Mahdi Esfandiari - Amin Rafrafi - Abolfazl Pirayesh
برنامه ریزی احتمالاتی بهینه فیلترهای پسیو در حضور خودروهای برقی متصل به شبکه با قابلیت جبرانسازی هارمونیک در شبکههای توزیع
پریسا انجم شعاع - سعید اسماعیلی
A COMPREHENSIVE DEEP LEARNING METHOD for SHORT-TERM LOAD FORECASTING
Mohammad Sayadlou - Mahdi Salay naderi - Mehrdad Abedi - Sajad Esmaeili - Mohammad Amini
Analysis of an E-core Permanent Magnet Switched Reluctance Motor
Ali Ghaffarpour - Mojtaba Mirsalim
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4