0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Hand Movment Decoding from EEG Signals Using Kalman Filter with Parameters Estimated via Neural Networks and Least Squares Method
نویسندگان :
Pegah Khoshkavandi
1
Mohammad B Shamsollahi
2
Ali Motie Nasrabadi
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه شاهد تهران
کلمات کلیدی :
Brain-computer interfaces،Kalman filter،Multilayer perceptron،Electroencephalography
چکیده :
Brain-computer interfaces (BCIs) facilitate direct communication between the brain and external devices, offering transformative potential for individuals with motor disabilities. One of the main challenges in this area is the accurate interpretation of hand movements from non-invasive electroencephalographic (EEG) signals, which are often affected by inherent noise and complexity. This study explores the integration of a Kalman filter with a multilayer perceptron (MLP) to enhance the estimation of hand movement trajectories based on EEG signals. While the Kalman filter is commonly used for continuous motion decoding, its effectiveness hinges on the precise analysis of its parameters, particularly the transfer matrix. Traditionally, these parameters are calculated using the least squares method. In this work, we propose a hybrid approach in which the transition matrix \mathbit{F}_\mathbit{i} is dynamically estimated using an MLP, while the remaining parameters are obtained via the least squares method. Using a 5-fold cross-validation protocol on EEG data from three individuals, the hybrid approach consistently showed improved correlation values for motion estimation across all axes when compared to the traditional Kalman filter. Notably, the Z-axis exhibited the most significant improvements, indicating that the hybrid approach effectively addresses the limitations of the Kalman filter. These findings highlight the potential of combining neural networks models with classical filtering techniques to achieve more accurate and reliable motion decoding. This advancement offers promising opportunities for brain-computer interfaces (BCIs) in assistive and rehabilitation technologies.
لیست مقالات
لیست مقالات بایگانی شده
Rank-Based Adaptive Brooding in a Mimetic Coral Reefs Search for Feature Selection
Seyed Amirhossein Farjadi - Mohammad Reza Akbarzadeh Totonchi
Significant Methods to Improve Control of Quadrotors, Hexarotors and Octorotors
Peyman Amiri - Nima Sina - Mohammad Danesh
مقایسه پارامترهای عملکردی کمپرسورهای 4:2 در تکنولوژی FinFET و GAA-NWFET
پگاه زکیان - راهبه نیارکی اصلی
Distributed Data Processing for Multi-Agent Systems Via Wave Model
Saeedreza Tofighi - Masoud Shafiee
خلاصه سازی ویدیوهای کپسول آندوسکوپی با رویکرد یادگیری انتقالی
محدثه امیریان چایجان - رضا آقائی زاده ظروفی - مسعود رضا سهرابی
مرتب سازی اسپایک های عصبی با استخراج ویژگی مبتنی بر شبکه عمیق خود رمزگذار
شیدا معجونی - حسین حسینی نژاد محبتی - امین نیک انجام
Generation of orbital angular momentum modes via SSPP leaky-wave antenna based on holography technique
Sajjad Zohrevand - Nader Komjani
Extended Phase Shift Control in Dual Active Bridge Converter Considering Magnetizing Inductance of Transformer
Masood Soleimanifard - Ali Yazdian Varjani
Image denoising using convolutional neural network
Behnam Latifi - Abolghasem Raie
Scattering by an array of PEC cylinders in ferrite media using spectral technique
Zahra Bahrami - Asghar Keshtkar - Ayaz Ghorbani
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2