0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Hand Movment Decoding from EEG Signals Using Kalman Filter with Parameters Estimated via Neural Networks and Least Squares Method
نویسندگان :
Pegah Khoshkavandi
1
Mohammad B Shamsollahi
2
Ali Motie Nasrabadi
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه شاهد تهران
کلمات کلیدی :
Brain-computer interfaces،Kalman filter،Multilayer perceptron،Electroencephalography
چکیده :
Brain-computer interfaces (BCIs) facilitate direct communication between the brain and external devices, offering transformative potential for individuals with motor disabilities. One of the main challenges in this area is the accurate interpretation of hand movements from non-invasive electroencephalographic (EEG) signals, which are often affected by inherent noise and complexity. This study explores the integration of a Kalman filter with a multilayer perceptron (MLP) to enhance the estimation of hand movement trajectories based on EEG signals. While the Kalman filter is commonly used for continuous motion decoding, its effectiveness hinges on the precise analysis of its parameters, particularly the transfer matrix. Traditionally, these parameters are calculated using the least squares method. In this work, we propose a hybrid approach in which the transition matrix \mathbit{F}_\mathbit{i} is dynamically estimated using an MLP, while the remaining parameters are obtained via the least squares method. Using a 5-fold cross-validation protocol on EEG data from three individuals, the hybrid approach consistently showed improved correlation values for motion estimation across all axes when compared to the traditional Kalman filter. Notably, the Z-axis exhibited the most significant improvements, indicating that the hybrid approach effectively addresses the limitations of the Kalman filter. These findings highlight the potential of combining neural networks models with classical filtering techniques to achieve more accurate and reliable motion decoding. This advancement offers promising opportunities for brain-computer interfaces (BCIs) in assistive and rehabilitation technologies.
لیست مقالات
لیست مقالات بایگانی شده
طراحی و شبیه سازی یک مولد اعداد تصادفی ترکیبی ارتقا یافته در آتوماتای سلولی نقطهکوانتومی با به کارگیری ساختارهای فراپایدار
سورنا آسیابان جونقانی - نوید یثربی
Recurrence Quantification and Machine Learning: A Novel Approach for Parkinson’s Disease Diagnosis from EEG Signals
Asghar Zarei - Alireza Talesh Jafadideh
Performance Evaluation of a Deep Neural Network Joint Equalizer-Decoder in AWGN-ISI Channels
Zahra Joleini - Ali Jamshidi
کنترل تطبیقی بازوی رباتی دو درجه آزادی با استفاده از یادگیری گروهی مبتنیبر الگوریتم اکثریت وزندار شده تصادفی
علی چراغی - امیرحسین جراره - سعید شمقدری
SchEdge: A Dynamic, Multi-agent, and Scalable Scheduling Simulator for IoT Edge
Ali Hamedi - Amirali Ghaedi - Amin Soltan-beigi - Athena Abdi
Displacement Estimation for Ultrasound Elastography based on a Robust Uniform Stretching Method
Zahra Hosseini - Ali Khadem - Mohammadreza Hassannejad Bibalan
Network-based functional connectivity in MDD with suicide ideation before and after TMS: An fMRI case study
Moslem Khafi - Morteza Fattahi - Hamid Soltanian-Zadeh - Reza Rostami
Precise model extraction for Li-Ion batteries using segmented Columb counting and Kalman filtering
Ali Fotokkiani - Ali Ghanbarian - Amirhossein Esteghamat - Ali Fotowat-Ahmady - Farzad Tahami
Using Convolutional Neural Networks for Sudden Cardiac Death prediction
Sara Tavazo - Farideh Ebrahimi
Improving the Reliability of Multicore Embedded Systems through an Evolutionary-based Task Scheduling Approach
Athena Abdi - Hamid R Zarandi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2