0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Hand Movment Decoding from EEG Signals Using Kalman Filter with Parameters Estimated via Neural Networks and Least Squares Method
نویسندگان :
Pegah Khoshkavandi
1
Mohammad B Shamsollahi
2
Ali Motie Nasrabadi
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه شاهد تهران
کلمات کلیدی :
Brain-computer interfaces،Kalman filter،Multilayer perceptron،Electroencephalography
چکیده :
Brain-computer interfaces (BCIs) facilitate direct communication between the brain and external devices, offering transformative potential for individuals with motor disabilities. One of the main challenges in this area is the accurate interpretation of hand movements from non-invasive electroencephalographic (EEG) signals, which are often affected by inherent noise and complexity. This study explores the integration of a Kalman filter with a multilayer perceptron (MLP) to enhance the estimation of hand movement trajectories based on EEG signals. While the Kalman filter is commonly used for continuous motion decoding, its effectiveness hinges on the precise analysis of its parameters, particularly the transfer matrix. Traditionally, these parameters are calculated using the least squares method. In this work, we propose a hybrid approach in which the transition matrix \mathbit{F}_\mathbit{i} is dynamically estimated using an MLP, while the remaining parameters are obtained via the least squares method. Using a 5-fold cross-validation protocol on EEG data from three individuals, the hybrid approach consistently showed improved correlation values for motion estimation across all axes when compared to the traditional Kalman filter. Notably, the Z-axis exhibited the most significant improvements, indicating that the hybrid approach effectively addresses the limitations of the Kalman filter. These findings highlight the potential of combining neural networks models with classical filtering techniques to achieve more accurate and reliable motion decoding. This advancement offers promising opportunities for brain-computer interfaces (BCIs) in assistive and rehabilitation technologies.
لیست مقالات
لیست مقالات بایگانی شده
مبدل DC/DC افزاینده شبهرزونانسی مبتنی بر ضربکنندهی ولتاژ ترکیبی با کلیدزنی نرم و بهرهی ولتاژ بالا
کوشا چوبداری عمران - رضا بیرانوند
Reduction of Common-Mode Voltage in Cascaded H-Bridge Inverter Under Faulty Conditions
Ashkan Raki - Yousef Neyshabouri - Hossein Iman-Eini - Mahdi Aslanian
Holographic Principle Inspired Metal-Only Spoof Surface Plasmon Polariton Leaky-wave Antenna with Circular Polarization
Sajjad Zohrevand - Mohammad Amin Chaychi zadeh - Nader Komjani
Improving Wind Turbines Blades Damage detection by using YOLO BoF and BoS
Reza Mohammadi - Saeed Sharifian
Positioning a Moving Target Using Range and Doppler-Rate Measurements with Bi-static Radar
MohammadAmin Latifi - Fereidoon Behnia
Analyzing Large-scale PV Plant Controllers by Technical Performance Indices using MCS Method
Hooman Nasrazadani - Alireza Sedighi - Hossein Seifi
بهینه سازی تزویج فیبر نوری باریک شده و موجبر نوری بر بستر پلیمر
مهتاب حسینعلی زاده - مونا ثریا - غلام محمد پارسا نسب - شکراله کریمیان
Effect of the Number of Quantum-Dot Layers on the Performance of the 1.3 µm InAs/GaAs VCSELs
Sara Alaei - Mahmood Seifouri - Saeed Olyaee - Gholamreza Babaabbasi
Energy-Efficient Residue-to-Binary Conversion Based on a Modulo-Adder-Free Architecture
Kamalaldin Mozaffari Maid - Amir Sabbagh Molahosseini
Design and Analysis of a Low-Power Two-Stage Dynamic Comparator with 40ps Delay in 65nm CMOS Technology
Razieh Ghasemi - Hossein Ghasemian - Ebrahim Abiri - Mohammad Reza Salehi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2