0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Hand Movment Decoding from EEG Signals Using Kalman Filter with Parameters Estimated via Neural Networks and Least Squares Method
نویسندگان :
Pegah Khoshkavandi
1
Mohammad B Shamsollahi
2
Ali Motie Nasrabadi
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه شاهد تهران
کلمات کلیدی :
Brain-computer interfaces،Kalman filter،Multilayer perceptron،Electroencephalography
چکیده :
Brain-computer interfaces (BCIs) facilitate direct communication between the brain and external devices, offering transformative potential for individuals with motor disabilities. One of the main challenges in this area is the accurate interpretation of hand movements from non-invasive electroencephalographic (EEG) signals, which are often affected by inherent noise and complexity. This study explores the integration of a Kalman filter with a multilayer perceptron (MLP) to enhance the estimation of hand movement trajectories based on EEG signals. While the Kalman filter is commonly used for continuous motion decoding, its effectiveness hinges on the precise analysis of its parameters, particularly the transfer matrix. Traditionally, these parameters are calculated using the least squares method. In this work, we propose a hybrid approach in which the transition matrix \mathbit{F}_\mathbit{i} is dynamically estimated using an MLP, while the remaining parameters are obtained via the least squares method. Using a 5-fold cross-validation protocol on EEG data from three individuals, the hybrid approach consistently showed improved correlation values for motion estimation across all axes when compared to the traditional Kalman filter. Notably, the Z-axis exhibited the most significant improvements, indicating that the hybrid approach effectively addresses the limitations of the Kalman filter. These findings highlight the potential of combining neural networks models with classical filtering techniques to achieve more accurate and reliable motion decoding. This advancement offers promising opportunities for brain-computer interfaces (BCIs) in assistive and rehabilitation technologies.
لیست مقالات
لیست مقالات بایگانی شده
An Improved Hybrid Recommender System: Integrating Document Context-Based and Behavior-Based Methods
Meysam Varasteh - Mehdi Soleiman Nejad - Hadi Moradi - Mohammad Amin Sadeghi - Ahmad Kalhor
تجزیه و تحلیل امواج فیبریلاتور دهلیزی به منظور طبقهبندی AF با استفاده از موجک لیدر
سارا میهن دوست
Optimal Placement of Of Maintenance Teams in Distribution Networks to Minimize Energy Not Supplied
Qasem Asadi - Ali Ashoornezhad - Hamid Falaghi - Maryam Ramezani
High Step up DC/DC Converter with Low Input Current Ripple and Low Voltage Stress on Semiconductors
Saed Mahmoud Alilou - Mohammad Maalandish - Soheil Nouri - Seyed Hossein Hosseini
T-type L-2L De-Embedding Method for On-Wafer T-model Transmission Line Network
Milad Seyedi - Nasser Masoumi - Samad Sheikhaei
Precise model extraction for Li-Ion batteries using segmented Columb counting and Kalman filtering
Ali Fotokkiani - Ali Ghanbarian - Amirhossein Esteghamat - Ali Fotowat-Ahmady - Farzad Tahami
Hybrid-Excited, Variable-Flux, and Inter-Modular Biased-Flux Motors: A Comparative Analysis
Mohammad Amirkhani - Ehsan Farmahini Farahani - Alireza Eikani - Mojtaba Mirsalim - Javad Shokrollahi Moghani
A Design Technique For Linear Desensitized LNAs
Masoumeh Sabzi - Mahmoud Kamarei - Yann Mahe - Tchanguiz Razban-Haghighi
طبقه بندی سکته مغزی در یک سیستم دو بعدی چند فرکانسی با استفاده از امواج مایکروویو و یادگیری عمیق
محسن مهرانیان - محمدسعید ماجدی - امیررضا عطاری
طراحی کنترل کننده امن سیستمهای غیرخطی با استفاده از یادگیری تقویتی و بهینه سازی مجموع مربعات
حسین قلی زاده - احسان رضوی - سجاد پاک خصال - سعید شمقدری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2