0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Improving Wind Turbines Blades Damage detection by using YOLO BoF and BoS
نویسندگان :
Reza Mohammadi
1
Saeed Sharifian
2
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Convolutional Neural Network (CNN)،Wind Turbines،Deep Learning،Drone Inspection،Damage Detection
چکیده :
—In this study, we introduce a novel wind turbines blade’s damage detection framework for reducing inspection time and improving accuracy in comparison with human. With recent developments and improvements in UAVs technology, aerial imagery can be used to achieve high resolution images from blades. The acquired images, can be analyzed by novel deep learning and image processing techniques like YOLO, to detect the failures and damages on surface of blades. But because of small training set and the structure of a damage in a image, we need to use advanced deep learning methods to achieve more accurate analysis than human eyes and also previous works. The proposed method is found to be effective based on experimental results in terms of suggesting damage locations and types on a surface, the system can achieve a level of precision better than a human-level inspection.
لیست مقالات
لیست مقالات بایگانی شده
LoRa-based Intelligent Helmet for Coal Miner Safety: Neural Network Prediction and BLE Location Tracking
Saba Pirahmadian - Sorin Yousefnia - Soheil Ganjefar
On the Correction of the Boundary Deformation Errors in Microwave Imaging With Spatial Priors
Seyyed Mohammad Hosseini - Amir Ahmad Shishegar
Privacy-Preserving Learning using Autoencoder-based Structure
Mohammad Ali Jamshidi - Hadi Veisi - Mohammad Mahdi Mojahedian - Mohammad Reza Aref
Simultaneous Stabilization of Constrained Singular Time-delay Systems
Emad Jafari - Tahereh Binazadeh
Refractive Index Sensor Based on Photonic Crystal Nanocavities
Mohammad Zargarzadeh - Mohammad Hasan Yavari - Mohammad Heydari - Mohammad Hasan Rezaei
Manifold Learning-Assisted Physical Layer Key Generation for LoRaWAN: an Experimental Study
Hossein Aghajari - Hamed Bakhtiari babadegani, - Mehdi Naderi soorki - Sajad Ahmadinabi - Seyed mohsen Ahmadi
A New Physical Philosophy to Model and Interpret Partial Discharge Phenomenon
Arman Vasigh Zadeh Ansari - Mahdi Vakilian
Coherent Direction of Arrival Estimation using Multiple Toeplitz Space Time Spatial Smoothing
Sepehr Kouzegaran - MASOUMEH AZGHANI
Classifier Fusion Based on Extracted Features Using a Spiking Neural Network from Handwritten Digits
Ali Gholamzade Fard Kazzazi - Malihe Nazari - Fariba Bahrami
Synergy of Deep Learning and Artificial Potential Field Methods for Robot Path Planning in the Presence of Static and Dynamic Obstacles
Mohammad Amin Basiri - Shirin Chehelgami - Erfan Ashtari - Mehdi Tale Masouleh - Ahmad Kalhor
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4