0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Optimal Bidding Strategy with Smooth Budget Delivery in Online Advertising
نویسندگان :
Mohammad Afzali
1
Keykhosro Khosravani
2
Maryam Babazadeh
3
1- McMaster University
2- Sharif university of technology
3- Sharif university of technology
کلمات کلیدی :
Optimal Control،Dynamic Programming،Real-time Bidding،Reinforcement Learning
چکیده :
In this paper, the optimal bidding strategy with smooth budget delivery in a real-time bidding (RTB) platform is addressed. Feedback control theory plays an essential role in the performance enhancement of ad campaigns in online advertising industry. The objective is to determine the optimal bidding prices as control signals such that (i) the total number of clicks by visiting users is maximized, and (ii) the campaign budget in every episode is smoothly delivered without a premature finishing of the campaign budget or excessive spending rates. In this paper, the advertisers are regarded as the agents in a Markov decision process, where the rewards are chosen according to the main campaign objectives. An advertiser is supposed to select a sequence of bidding actions in terms of a control policy such that a long-term accumulation of the rewards is maximized. It is shown that the smooth bidding with real-time adaptation fits into the framework of reinforcement learning with dynamic programming. Accordingly, an approximation algorithm is proposed to solve the corresponding Bellman optimality equation. The results are utilized to form the bidding strategy with smooth budget delivery. Simulation results on a real-world dataset confirm that the proposed approach outperforms the state-of-the-art bidding strategies, by sustainable participation in the auctions, and maximizing the number of user clicks.
لیست مقالات
لیست مقالات بایگانی شده
بهبودی بر مساله تشخیص اشیا برجسته درتصاویر مبتنی بر یادگیری عمیق
مهران طاهری - محمد صادق هل فروش - کامران کاظمی
کنترل درایو موتور DC بدون جاروبک سه فاز با اینورتر چهار سوییچه به روش کنترل پیش بین مدل مبتنی بر تعداد حالات کنترلی محدود (FCS-MPC)
ابوالفضل حلوایی نیاسر - سجاد محمدی کوجانی
تولید پایگاه داده مصنوعی برای مقره های الکتریکی از روی دادههای تصویری با استفاده از شبکههای مولد تخاصمی
امیرحسین جراره - ابولفضل منافی - سعید شمقدری
An Improved Real-Time Implementation of Adaptive Neuro-fuzzy Controller
Iman Gholizadeh - Haniye Raziyan - Reza Javidan
Crypto Currency Price Prediction Using Preprocessed Scaled Inputs LSTM Model Enhanced by Improved Gray Wolf Optimization
Amir RabbaniParsa - Mahboobeh Hoshmand - Seyyed Abed Hosseini
Image Inpainting Using AutoEncoder and Guided Selection of Predicted Pixels
Mohammad Hossein Givkashi - Mahshid Hadipour - َArezoo PariZanganeh - Zahra Nabizadeh Shahre-Babak - Nader Karimi - Shadrokh Samavi
Multi-Agent Systems for Quadcopter under Nonlinear Dynamics and Actuator Modeling with MPC and LQR Controller
Navid Mohammadi - Saeed Khankalantary
بهبود پردازش وفقی فضا-زمان (STAP) در سیستمهای رادار هوابرد با استفاده از الگوریتمهای آگاه به تنک بودن (Sparsity) سیستم
علی شیخیان - سارا میهن دوست - نعمت الله عزتی - احسان مصطفی پور
Fixed-Time Nonlinear Observer for a Class of Applicable Nonlinear Systems
علی ابویی - Mohammad Hadi Rezaei
Net Load Forecasting of Household Prosumers Considering Deep Reinforcement Learning
Behzad Motallebi Azar - Rasool Kazemzadeh - Morteza Zare Oskouei - Behnam Mohammadi-Ivatloo
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0