0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Net Load Forecasting of Household Prosumers Considering Deep Reinforcement Learning
نویسندگان :
Behzad Motallebi Azar
1
Rasool Kazemzadeh
2
Morteza Zare Oskouei
3
Behnam Mohammadi-Ivatloo
4
1- Sahand University of Technology
2- Sahand University of Technology
3- Sahand University of Technology
4- Lappeenranta University of Technology
کلمات کلیدی :
Net load forecasting،Machine learning،Household prosumers،Deep reinforcement learning
چکیده :
The advent of machine learning (ML) has opened up a promising avenue for forecasting energy systems operations. Meanwhile, deep reinforcement learning (DRL) algorithms as advanced ML techniques attracted lots of attention. In this regard, this study employs the twin delayed deep deterministic policy gradient (TD3) DRL algorithm to forecast net load in a mid-term manner for heterogeneous household prosumers over consecutive days during summer and winter, highlighting seasonal variations. Moreover, all simulations are run based on real-world data to depict the efficiency of the proposed framework.
لیست مقالات
لیست مقالات بایگانی شده
Enhancing Disaster Communication: Multi-UAV Optimization for Efficient Coverage
Amirhossein Solati - Javad Zeraatkar Moghaddam - Mehrdad Ardebilipour
Network-based functional connectivity in MDD with suicide ideation before and after TMS: An fMRI case study
Moslem Khafi - Morteza Fattahi - Hamid Soltanian-Zadeh - Reza Rostami
Validation of statistical models for direction of arrival, time of arrival and received power in a simple indoor Terahertz channel
Sina Sheybani - Amir ahmad Shishegar
بهبود بازدهی انرژی در اینترنت اشیاء باند باریک با وفقیسازی لینک به کمک یادگیری عمیق
سمانه امیریان - محمدعلی سبقتی
تولید پایگاه داده مصنوعی برای مقره های الکتریکی از روی دادههای تصویری با استفاده از شبکههای مولد تخاصمی
امیرحسین جراره - ابولفضل منافی - سعید شمقدری
Using Compressive Sensing Technique in Image Sensing
Zahra Sepehri - Seyed Masoud Sayedi - Ehsan Yazdian
Fast Adapted Delay and Sum Reconstruction Algorithm in Circular Photoacoustic Tomography
Soheil Hakakzadeh - Seyed masood Mostafavi - Zahra Kavehvash
تخمین کانال متغیربازمان در سیستمهای MIMO – موجمیلیمتری چندکاربره
زهرا معروفی - امیرحسین مولازاده - مهرداد اردبیلیپور
Application of Statistical Techniques and Machine Learning in Forecasting Distribution Network Load: A Real Case Study on the Iranian Power System
Hossein Jafari - Mohammad Sadegh Sepasian - Fatemeh Teimori
A New Physical Philosophy to Model and Interpret Partial Discharge Phenomenon
Arman Vasigh Zadeh Ansari - Mahdi Vakilian
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2