0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Artificial Intelligence-Based Prediction of Flexibility Requirements in Power Systems
نویسندگان :
MohammadReza Zarei-Jeliani
1
Mahmud Fotuhi-Firuzabad
2
Niloofar Pourghaderi
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه صنعتی شریف
کلمات کلیدی :
Deep Learning،Renewable generations،Flexibility requirements،Net load
چکیده :
In the evolving landscape of power systems, the integration of renewable energy sources introduces a significant layer of variability and uncertainty demanding strategic finesse to address flexibility requirements of the power system. This paper proposes an innovative artificial intelligence (AI)-based approach to account for the flexibility requirements of the power systems in order to reflect the variability and uncertainty of renewable energy sources and demands. One of the main aspects of the proposed methodology is the precise prediction of power system net load which is a dynamic quantity representing the real-time difference between system load and renewable generations. To achieve highly accurate net load forecasts, an AI-driven method is employed by utilizing a deep learning model in the form of a convolutional neural network-long short-term memory (CNN-LSTM) hybrid. To address the inherent uncertainty in predicted net load, a quantile regression model is adopted which provides the net load range at a certain confidence level. This dual-pronged methodology combines precise prediction and uncertainty quantification to precisely characterize the ramp-up and ramp-down flexibility requirements of the power system. A real-data case study as well as a comparative case study are investigated to demonstrate the model effectiveness.
لیست مقالات
لیست مقالات بایگانی شده
Data Association and Multi-Target Localization Using Particle Swarm Optimization
Seyed Mohammad B. Seyedin - Fereidoon Behnia
Experimental Study on Automatically Assembling Custom Catering Packages With a 3-DOF Delta Robot Using Deep Learning Methods
Reihaneh Yourdkhani - Arash Tavoosian - Navid Asadi Khomami - Mehdi Tale Masouleh
A New Unsupervised Feature Learning Method for Object Recognition using Prior-Knowledge Data
Ashkan Farrokhi - Hadi Seyedarabi
Explainable AI-Driven Deep Learning Framework for Short-Term Net Load Forecasting
Sina Hossein Beigi Fard - ََAmir Hossein Baharvand - Amir Hossein Poursaeed - Meysam Doostizadeh
Improving Spiking Neural Network Performance Using Astrocyte Feedback for Farsi Digit Recognition
Malihe Nazari - Fariba Bahrami - Mohammad Javad Yazdanpanah
A New Atrial Fibrillation Detection System with Noise Cancellation and Signal Annotation
Amirali Banaei Kashani - Bardia Baraeinejad - Mohammad Fakharzadeh
پیش بینی قیمت انرژی الکتریکی در بازار روز بعد با استفاده از شبکه عصبی مصنوعی تعمیم یافته و با در نظر گرفتن محدودیت سوخت رسانی
حسین صابر - سعید محسنی - رضا پورآقابابا - مصطفی یحیی آبادی
Energy-Efficient Residue-to-Binary Conversion Based on a Modulo-Adder-Free Architecture
Kamalaldin Mozaffari Maid - Amir Sabbagh Molahosseini
طراحی تزویجگر پهن باند سه استابی فشرده میکرواستریپ برای استفاده در ترکیب کننده توان
صادق حیدری کاهکش - اکرم شیخی
گیت Xor/Xnor جدید با مصرف توان پایین مبتنی بر تکنولوژی اسپینترونیک
ایمان علیبیگی - محمود تابنده - سعید باقری شورکی - رامین رجایی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3