0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Artificial Intelligence-Based Prediction of Flexibility Requirements in Power Systems
نویسندگان :
MohammadReza Zarei-Jeliani
1
Mahmud Fotuhi-Firuzabad
2
Niloofar Pourghaderi
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه صنعتی شریف
کلمات کلیدی :
Deep Learning،Renewable generations،Flexibility requirements،Net load
چکیده :
In the evolving landscape of power systems, the integration of renewable energy sources introduces a significant layer of variability and uncertainty demanding strategic finesse to address flexibility requirements of the power system. This paper proposes an innovative artificial intelligence (AI)-based approach to account for the flexibility requirements of the power systems in order to reflect the variability and uncertainty of renewable energy sources and demands. One of the main aspects of the proposed methodology is the precise prediction of power system net load which is a dynamic quantity representing the real-time difference between system load and renewable generations. To achieve highly accurate net load forecasts, an AI-driven method is employed by utilizing a deep learning model in the form of a convolutional neural network-long short-term memory (CNN-LSTM) hybrid. To address the inherent uncertainty in predicted net load, a quantile regression model is adopted which provides the net load range at a certain confidence level. This dual-pronged methodology combines precise prediction and uncertainty quantification to precisely characterize the ramp-up and ramp-down flexibility requirements of the power system. A real-data case study as well as a comparative case study are investigated to demonstrate the model effectiveness.
لیست مقالات
لیست مقالات بایگانی شده
حسگر زیستی نانومتری حساس با زیرلایه غیرهمگن برای تشخیص سلول های سرطانی
پریسا مرادی هارونی - محمود رفائی بوکت
Comparison of the MRT and ZF Precoding in Massive MIMO Systems from Energy Efficiency Viewpoint
Mahdi Nangir - Abdolrasoul Sakhaei Gharagezlou - Nima Imani
Semi-supervised Deep Reinforcement Learning in Decentralized Multi-Agent Collision Avoidance and Path Planning in a Complex Environment
Marzie Parooei - Mehdi Tale Masouleh - Ahmad Kalhor
Human Identification based on micro-Doppler images using Residual Networks
Ali Pouresmaeil - Pegah Kakvand - Mohammad Ali Sebt
Low-cost dielectrophoresis-based microfluidic chip for label-free particle separation with 3D electrodes
Fatemeh Esmaeili - Zeynab Alipour - Mehdi Fardmanesh
Robot-Assisted Rehabilitation with Optimal Impedance: Using an $\mathcal{EKF}$-Based $\mathcal{L}asso-\mathcal{MPC}$
Hossein Ahmadian - Iman Sharifi - Heidar Ali Talebi
حل مسئله مجموعه مستقل d-فاصله با رویکرد CombOpt Zero
فاطمه نیکبخت نصرآبادی - حسین فلسفین - مهران صفایانی
Explainable AI-Driven Deep Learning Framework for Short-Term Net Load Forecasting
Sina Hossein Beigi Fard - ََAmir Hossein Baharvand - Amir Hossein Poursaeed - Meysam Doostizadeh
Ultra-Compact and Fast All-Optical Half-Subtractor Photonic Crystal Logic Gate
Ehsan Veisi - Mahmood Seifouri - Saeed Olyaee
Wake-Sleep Learning in R-STDP-Based Spiking Neural Networks to Avoid Catastrophic Forgetting
Mehrdad Baradaran - Katayoon Kobraei - Saeed Reza Kheradpisheh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2