0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Artificial Intelligence-Based Prediction of Flexibility Requirements in Power Systems
نویسندگان :
MohammadReza Zarei-Jeliani
1
Mahmud Fotuhi-Firuzabad
2
Niloofar Pourghaderi
3
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه صنعتی شریف
کلمات کلیدی :
Deep Learning،Renewable generations،Flexibility requirements،Net load
چکیده :
In the evolving landscape of power systems, the integration of renewable energy sources introduces a significant layer of variability and uncertainty demanding strategic finesse to address flexibility requirements of the power system. This paper proposes an innovative artificial intelligence (AI)-based approach to account for the flexibility requirements of the power systems in order to reflect the variability and uncertainty of renewable energy sources and demands. One of the main aspects of the proposed methodology is the precise prediction of power system net load which is a dynamic quantity representing the real-time difference between system load and renewable generations. To achieve highly accurate net load forecasts, an AI-driven method is employed by utilizing a deep learning model in the form of a convolutional neural network-long short-term memory (CNN-LSTM) hybrid. To address the inherent uncertainty in predicted net load, a quantile regression model is adopted which provides the net load range at a certain confidence level. This dual-pronged methodology combines precise prediction and uncertainty quantification to precisely characterize the ramp-up and ramp-down flexibility requirements of the power system. A real-data case study as well as a comparative case study are investigated to demonstrate the model effectiveness.
لیست مقالات
لیست مقالات بایگانی شده
DRAU-Net: Double Residual Attention Mechanism for automatic MRI brain tumor segmentation
Mohammad Soltani gol - Morteza Fattahi - Hamid Soltanian zadeh - Samd Sheikhaei
A Communication-Aware Scheduler for Containers in a Kubernetes Environment Using Girvan-Newman Clustering
Marzie Norouzi Dehnashi - Mahmoud Momtazpour - Seyyed Ahmad Javadi
Iranian stock market fluctuations: from social news to forecasting models
Maryam Sharifinia - Farzaneh Ghayour Baghbani
Implementation of an Optimized Deep Learning Model to Assess Pediatric Sleep Apnea Severity Using SpO2 Signals on Resource-Limited Microcontrollers
Erfan Mortazavi - Hanieh Mohammadi - Bahram Tarvirdizadeh - Khalil Alipour - Mohammad Ghamari
Adaptive Fault Tolerant Control in Time-Varying Formation of Multi-Agent Systems
Elham Bahrampour - Mohammad Tavazoei
گیت Xor/Xnor جدید با مصرف توان پایین مبتنی بر تکنولوژی اسپینترونیک
ایمان علیبیگی - محمود تابنده - سعید باقری شورکی - رامین رجایی
Efficient Full Adders for Approximate Arithmetic Units in the Image Processing Applications
Bahram Rashidi
Optimization of Novel L-shaped Gate All Around Junctionless Field Effect Transistor
Mohammad Tabarsi Sochelmaei - Arash Yazdanpanah Goharrizi
A Circularly Polarized Metal-Only Holographic Leaky-Wave Antenna Based on Spoof Surface Plasmon Polaritons
Reza Ashrafi Mohabadi - Sajjad Zohrevand - Mohammad Amin Chaychizadeh - Nader Komjani
Enhanced Current Commutation Drive Circuit for Hybrid DC Circuit Breaker
Alireza Jaafari - Sadegh Mohsenzade - Ali Asghar Razi-Kazemi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0