0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
Contextual and Spectral Feature Fusion Using Local Binary Graph for Hyperspectral Images Classification
نویسندگان :
Zahra Farmahini Farahani
1
Hassan Ghassemian
2
Maryam Imani
3
1- دانشگاه تربیت مدرس
2- دانشگاه تربیت مدرس
3- دانشگاه تربیت مدرس
کلمات کلیدی :
spectral-spatial, classification, hyperspectral, feature fusion, local graph
چکیده :
So far, many methods have been developed to fuse the spectral and spatial features for hyperspectral image processing. There are several approaches for HS image classification. But, the best approch is using spectral features and spatial features simultaneously. So, one of the challenges for researchers is fusing spectral and spatial features. Local Binary Graph (LBG) is one of the efficient techniques among them. An improved version of LBG is proposed in this paper, which involves the class label for feature extraction to minimize within class similarity. The proposed method considers three constraints for selection of the nearest spectral-spatial neighbors and sharing between them. The constraints include the minimum distance of the spectral features vector, minimum distance of the spatial features vector and belonging to the same class. So, the proposed method can fuse the spectral and spatial features with increasing the class discrimination ability. The experiments show that the proposed method improves the overall classification accuracy on Pavia University and Indian pines data sets more than 20% and 5%, respectively.
لیست مقالات
لیست مقالات بایگانی شده
Transmission and Energy Storage Co-Planning Expansion Considering Short-Term Uncertainties under Renewable Penetration
Mojtaba Moradi-Sepahvand - Turaj Amraee
Recurrence Quantification and Machine Learning: A Novel Approach for Parkinson’s Disease Diagnosis from EEG Signals
Asghar Zarei - Alireza Talesh Jafadideh
مدلسازی نویز فاز در ساختار کاهنده نویز نوسانساز مبتنی بر تداخلسنجی
سیدمحمدعلی صدرقاینی - علی بنائی
Forecasting Tehran Stock Exchange Trend with Time Series Analysis, Fundamental Data, and Sentiment Analysis in News
Mahdi Shamisavi - Amir Jahanshahi
بررسی تحلیلی به کارگیری ریزشبکه برای مصرف کننده های پر مصرف مسکونی در ایران
عنایت الله محقق - حبیب رجبی مشهدی
Automotive radar target classification using micro-Doppler features
Amin Aghatabarroodbary - Mohammad Hassan Bastani - Fereidoon Behnia
بهینه سازی استفاده از منابع شبکه های نوری با گرومینگ ترافیک در لایهی MPLS
محمدعلی سالک قادری - آرش رضایی - لطف اله بیگی
Semi-supervised Deep Reinforcement Learning in Decentralized Multi-Agent Collision Avoidance and Path Planning in a Complex Environment
Marzie Parooei - Mehdi Tale Masouleh - Ahmad Kalhor
Digitizing Analog ECGs: A Deep Learning Pipeline for Converting Historical Records into High-Quality Digital Signals
Sahar Askari - Somayeh Afrasiabi
Non-pharmacological interventions for Covid-19 new variants with fractional order fuzzy type-2 PID
Hadi Delavari - Amir Veisi - Maryam Ranjbaran
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2