0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
Contextual and Spectral Feature Fusion Using Local Binary Graph for Hyperspectral Images Classification
نویسندگان :
Zahra Farmahini Farahani
1
Hassan Ghassemian
2
Maryam Imani
3
1- دانشگاه تربیت مدرس
2- دانشگاه تربیت مدرس
3- دانشگاه تربیت مدرس
کلمات کلیدی :
spectral-spatial, classification, hyperspectral, feature fusion, local graph
چکیده :
So far, many methods have been developed to fuse the spectral and spatial features for hyperspectral image processing. There are several approaches for HS image classification. But, the best approch is using spectral features and spatial features simultaneously. So, one of the challenges for researchers is fusing spectral and spatial features. Local Binary Graph (LBG) is one of the efficient techniques among them. An improved version of LBG is proposed in this paper, which involves the class label for feature extraction to minimize within class similarity. The proposed method considers three constraints for selection of the nearest spectral-spatial neighbors and sharing between them. The constraints include the minimum distance of the spectral features vector, minimum distance of the spatial features vector and belonging to the same class. So, the proposed method can fuse the spectral and spatial features with increasing the class discrimination ability. The experiments show that the proposed method improves the overall classification accuracy on Pavia University and Indian pines data sets more than 20% and 5%, respectively.
لیست مقالات
لیست مقالات بایگانی شده
Synergizing ISAC and OTFS in a Non-GB-OMA Downlink Framework
Ghasem Saeidi - Hamid Saeedi-sourck
Photonic Crystal-based Plasmonic Biosensor with Low-cost and High-sensitivity Properties
Mahdieh Ahmadi Motlagh - Mahdieh Bozorgi - Mahmood Rafaei-Booket
تحلیل عدم تعادل جریان سه فاز شبکه فشارضعیف توزیع در پی قطع هادی نول متصل به ترانسفورماتور با استفاده از مولفههای متقارن
احمد صالحی دوبخشری
Virtual power plant participation in day-ahead and futures markets with a deep learning approach
Farzin Ghasemi Olanlari - Mohammad Fazel Dehghanniri - Turaj Amraee
A Combined Channel Approach for Decoding Intracranial EEG Signals: Enhancing Accuracy through Spatial Information Integration
Maryam Ostadsharif Memar - Navid Ziaei - Behzad Nazari
High-Gain Quasi-Z-Source DC-DC Converter with Single Magnetic Core and Pole Placement Control for DC Microgrid Applications
Ali Nadermohammadi - Zahra Behboudi - Amirhossein Akhbari - Soheil Norouzi - Seyed Hossein Hosseini - Mehran Sabahi
اصلاح مسیرخروجی ID FANتا دودکش اشکودا و امکان سنجی بازیابی حرارتی دود
یاشار مغمومی - فرشته صادقی
طراحی یک ماتریس باتلر 4×4 فشرده برای کاربرد در سیستم های شکل دهنده پرتو در شبکه های WLAN
آزاده ایمانی - محمد سجاد بیاتی
A New Low Noise 4-Gb/s Serial CMOS MPPM Modulator
Erfan Alasvand Andekah - Noushin Ghaderi - Mostafa Pour Sayahi
TELLM: Advancements in Knowledge Incorporation and Task-specific Enhancements of Large Language Models
Fatemeh Feizi - Amirhossein Hossein Nia - MohammadMahdi Hemmatyar - Fatemeh Rahimi - Farhoud Jafari Kaleibar
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3