0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
An Improved Hybrid Recommender System: Integrating Document Context-Based and Behavior-Based Methods
نویسندگان :
Meysam Varasteh
1
Mehdi Soleiman Nejad
2
Hadi Moradi
3
Mohammad Amin Sadeghi
4
Ahmad Kalhor
5
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- University of Tehran
5- University of Tehran
کلمات کلیدی :
سیستم های توصیه گر،فیلتر مشارکتی،یادگیری عمیق،لایه های کانولوشنی
چکیده :
One of the main challenges in recommender systems is data sparsity, which leads to high variance. Several attempts have been made to improve the bias-variance trade-off using auxiliary information. In particular, document modeling-based methods have improved the model’s accuracy by using textual data such as reviews, abstracts, and storylines when the user-to-item rating matrix is sparse. However, such models are insufficient to learn optimal representation for users and items. For building recommender systems, user-based and item-based collaborative filtering have long been used due to their efficiency. A user and item profile are created based on their historically interacted items and the users who interacted with the target item. In spite of the fact that these two approaches have been studied separately, there has been little research into combining them. The purpose of this study is to combine these two approaches by considering the opinions of users on these items. Each user is represented by their historical behavior, while each item is represented by the users who have interacted with it before, combined with contextual information, which is processed with NLP. The proposed algorithm is implemented and tested on three real-world datasets that demonstrate our model’s effectiveness over the baseline methods
لیست مقالات
لیست مقالات بایگانی شده
Global Voltage Harmonic Index for Measuring Harmonic Situation of Power Grids: A Focus on Power Transformers
Alireza Zabihi - Mehrzad Bidari - Hossein Mokhtari
Atrial Fibrillation (AF) Detection Using Deep Learning with GAN-based Data Augmentation
Amirhossein Akhoondkazemi - Arash Vashagh - Sayed Jalal Zahabi - Davood Shafie
بهینه سازی استفاده از منابع شبکه های نوری با گرومینگ ترافیک در لایهی MPLS
محمدعلی سالک قادری - آرش رضایی - لطف اله بیگی
Improved Model Predictive Control for the Three-Phase Grid-Connected Split-Source Inverter
Seyed Hamid Montazeri - Jafar Milimonfared - MohammadReza Zolghadri
A New High Step-Up Quasi Z-Source DC-DC Converter Using Buffer and Switched Capacitor Techniques
Erfan Meshkizadeh - Ebrahim Afjei - Morteza Kheradmandi
Bit Error Rate Analysis for a Mixed Underwater OWC-FSO Relaying System in the Presence of Pointing Error
Mahdis Saghaee Jahed - Meysam Ghanbari - Seyed Mohammad Sajad Sadough
Revolutionizing Energy Efficiency: A Case Study on Self-supply of Electrical Energy in the Mobarake Steel Industry
Mahdi Shadi - Seyed Mohammad Shobeiry - Mohammad Sadegh Ghazizadeh - Hassan Mardani
شناسایی گرههای مهم سیستم قدرت با استفاده از ابزار شبکههای پیچیده و مرکزیتهای مبتنی بر تشخیص جامعه
سپهر مردانی - علی کریمی - مهران معماری
Robust Wireless Power Transfer by Self-Oscillating Controlled Inverter and Tripolar Receiving Pad
Alireza Eikani - Behnam M. Mosammam - Mojtaba Mirsalim
Simulation of planar organic-inorganic perovskite light-emitting diode
Morteza Yarahmadi - Elnaz Yazdani - Mohammad Kazem Moravvej-Farshi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3