0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
An Improved Hybrid Recommender System: Integrating Document Context-Based and Behavior-Based Methods
نویسندگان :
Meysam Varasteh
1
Mehdi Soleiman Nejad
2
Hadi Moradi
3
Mohammad Amin Sadeghi
4
Ahmad Kalhor
5
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- University of Tehran
5- University of Tehran
کلمات کلیدی :
سیستم های توصیه گر،فیلتر مشارکتی،یادگیری عمیق،لایه های کانولوشنی
چکیده :
One of the main challenges in recommender systems is data sparsity, which leads to high variance. Several attempts have been made to improve the bias-variance trade-off using auxiliary information. In particular, document modeling-based methods have improved the model’s accuracy by using textual data such as reviews, abstracts, and storylines when the user-to-item rating matrix is sparse. However, such models are insufficient to learn optimal representation for users and items. For building recommender systems, user-based and item-based collaborative filtering have long been used due to their efficiency. A user and item profile are created based on their historically interacted items and the users who interacted with the target item. In spite of the fact that these two approaches have been studied separately, there has been little research into combining them. The purpose of this study is to combine these two approaches by considering the opinions of users on these items. Each user is represented by their historical behavior, while each item is represented by the users who have interacted with it before, combined with contextual information, which is processed with NLP. The proposed algorithm is implemented and tested on three real-world datasets that demonstrate our model’s effectiveness over the baseline methods
لیست مقالات
لیست مقالات بایگانی شده
Adaptive dynamic programming for kinematic control of 3 interconnected wheeled mobile robots
Aliakbar Ghasemzadeh - Roya Amjadifard - Ali Keymasi Khalaji
مدل سازی دینامیکی ژنراتور سنکرون آهنربای دائم (PMSG) و تحلیل رفتار آن در شرایط عیب اتصال حلقه استاتور
مجید محرمی - منصور اوجاقی
تشخیص و مقیاس بندی شدت افسردگی براساس روشهای یادگیری ماشین و با استفاده از معیارهای خطی، غیرخطی و آماری محاسبه شده در سیگنالهای الکتروانسفالگرام
پریسا رئوف امامزاده هاشمی - وحید شالچیان - رضا رستمی
پیشبینی توان تولیدی توربینهای بادی با روشهای حافظه کوتاهمدت طولانی و ماشین تقویتکنندهی گرادیان سبک
سید متین ملکوتی - مهدی منصوری - امیر ریخته گرغیاثی
RCS Calculation of a Symmetrical Microstrip Array Using Discrete Bodies of Revolution Method
Hossein Mohammadzadeh - Abolghasem Zeidaabadi Nezhad - Zaker Hossein Firouzeh
A Transformer less Quadratic Boost DC-DC Converter with Continuous Input Current and a Few Number of Components, Based on Classical Boost and Cuk Converter Suitable for Renewable Applications
Saeed Mahdizadeh - Reza Sharifi Shahrivar - Hossein Gholizadeh - Ebrahim Afjei
Establishment of a Virtual Power Plant in Grid for Maximizing Producers' Profits and Minimizing Pollutant Emissions and Investment Costs
Amir Hossein Gholami - Amir Abulfazl Suratgar - Mohammad Bagher Menhaj - Mohammad Reza Hesamzadeh
Lane Change Decision Making Using Deep Reinforcement Learning
Pedram Lamei - Mohammad Haeri
Dynamic Wide Area Situational Awareness: Practical Experience
Maghsoud Mokhtari - Mostafa Rajabi Mashhadi - Mehdi Moghimzadeh - Maziyar Jamshidi - Mehdi Baligh
Optimal D2D Resource Allocation in Heterogeneous Cellular Networks by Decentralized Multi-Agent Deep Q-Learning
Pouya Akhoundzadeh - Ghasem Mirjalily - Mohammad taghi Sadeghi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1