0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Novel RBFNN-Based Triple Terminal Sliding Mode Control for robotic manipulators
نویسندگان :
Mahdi Armoon
1
Marzie Lafouti
2
Babak Tavassoli
3
Hamid D.Taghirad
4
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
4- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Triple terminal sliding mode control،Radial basis function neural network،Robotic manipulators،Finite time control،Lyapunov approach
چکیده :
This paper introduces a novel RBFNN-based triple terminal sliding mode control method which has been implemented on robotic system. Radial basis function neural networks (RBFNNs) and a triple terminal sliding mode controller are designed for the 3-DOF manipulator since an adaptive robust position control is used to track the robots' manipulator . In this research, friction, errors in modeling and external disturbances are considered as uncertainties. The RBFNN approximates the nonlinearity of the robot dynamics according to adaptive laws including unknown parameters estimation which leads to ensuring the asymptotic stability of the closed-loop system. Lyapunov's theorem of stability is used to determine the parameters of the controller and an online adaptive learning algorithm is utilized in order to adjust them. Thus, the stability, robustness and appropriate tracking performance for this robotic system are guaranteed. The simulations performed on a three-link robot show high accuracy of tracking, reduction of chattering phenomenon and fast .response in a finite-time despite approximate errors and uncertainties
لیست مقالات
لیست مقالات بایگانی شده
Analysis of the DC Bias Effects on the Transformer Vibration Using a Multi-field Coupling Model
Amir Esmaeili Nezhad - Mohammad Hamed Samimi
Development of Iterative Learning Control Method Based on Markov Parameters for High-Order Discrete-Time Singular Systems
Meysam Azhdari - Tahereh Binazadeh - Ali Gholami
Entanglement Witness Derived By Using Kolmogorov-Arnold Networks
Fatemeh Lajevardi - Azam Mani - Ali Fahim
تشخیص و مقیاس بندی شدت افسردگی براساس روشهای یادگیری ماشین و با استفاده از معیارهای خطی، غیرخطی و آماری محاسبه شده در سیگنالهای الکتروانسفالگرام
پریسا رئوف امامزاده هاشمی - وحید شالچیان - رضا رستمی
Multi-objective Optimization of Peer-to-Peer Transactions in Arizona State University’s Microgrid by NSGA II
Pourya Shirinshahrakfard - Amir Abolfazl Suratgar - Mohammad Bagher Menhaj - Gevork B. Gharehpetian
A Real Time MPC-Based Strategy for PV Plant with Battery Energy Storage
Mohammad Amini - Sajad Esmaeili - Mohammad Sayadlou - Amir Khorsandi - Seyed Hossein Hosseinian
Tumor-treating fields orientation effects on breast cancer cells in vitro
Fatemeh Khanmohammadi - Mohammad Sadegh Bank - Majid Badieirostami
طراحی کنترلکننده مد لغزشی دینامیک برای سیستم تعلیق فعال غیر خطی با عملگر غیرایدهآل
مونا عظیمی - الهه مرادی
Two-Stage Stochastic Modeling for Energymnagement and Control of Virtual Power Plants: Addressing Renewable Energy Challenges
Mohammadreza Mousavi Khademi - Mehdi Zareian Jahromi
Applying Parameter-Oriented Learning to Identify Statistical EEG Features Associated with Depression
Sara Bargi Barkouk - Melika Changizi - Mahdi Zolfagharzadeh Kermani - Ali Asadi Zeidabadi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4