0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Application of Transfer Learning in Optimized Filter- Bank Regularized CSP to Classification of EEG Signals with Small Dataset
نویسندگان :
M. Moein Esfahani
1
Hossein Sadati
2
1- Faculty of Electrical Engineering K. N. Toosi University of Technology Tehran, Iran
2- Faculty of Electrical Engineering K. N. Toosi University of Technology Tehran, Iran
کلمات کلیدی :
Brain-Computer-Interface،BCI،EEG،Motor Imagery،FBRCSP،Common Spatial Pattern
چکیده :
Application of Brain-Computer Interface (BCI) systems to develop a path between brain and external devices, such as Electroencephalography (EEG) signal acquisition, is extensively under study in regard to brain electrical activities. EEG is an inexpensive brain cognition and imaging method with high temporal resolutions for feature extraction in Motor Imagery tasks. The common spatial pattern (CSP) and its optimized algorithms are effective methods for discriminating and classifying EEG Signals. To classify motor imagery tasks in EEG signals, we need to implement the CSP algorithm to extract features and discriminate spatial patterns based on movement tasks in two-class motor imagery signals. Furthermore, owing to the amount of noise in EEG signals and the limited number of trials per subject, we need to optimize the conventional CSP algorithm by adding a penalty term in the denominator of the CSP cost functions. In this study, due to differences in each subject's neural activities, we employed transfer learning which used the information for other subjects to regulate features of the subject. Additionally, BCI Competition III dataset IVa was analyzed. Furthermore, this study presents the optimized Filter Bank Regularized CSP algorithm with Transfer Learning to perform the classification of the electroencephalography (EEG) motor imagery signals. Moreover, to compare the efficiency of the proposed algorithm, the conventional CSP and the proposed optimized CSP have been weighed, and results for both methods are presented. The results at the end explain that the classification with 10-fold cross-validation in comparison with that of the proposed method achieves approximately 15% and 21% higher accuracy against the R-CSP and conventional CSP, respectively.
لیست مقالات
لیست مقالات بایگانی شده
مکان یابی بهینه ذخیره سازهای متحرک انرژی الکتریکی با هدف بهبود تاب آوری سیستم توزیع قبل از طوفان
سبحان آقابابایی - محمد صادق سپاسیان
GAN-Driven Image Generation for Metamaterial Absorbers Using Mean and Variance Encoding
Atefe Shahsavaripour - Mohammad Hossein Badiei - Leila Yousefi - Ahmad Kalhor
An Improved U-Type Inter-Modular Biased-Flux Permanent Magnet Motor
Ehsan Farmahini Farahani - Mohammad Afrank - Mojtaba Mirsalim - Javad Shokrollahi Moghani
Lateral Stability of Electric Vehicles in Car-Following Scenario Using High-Accuracy NMPC
Mohammad Behzad Roohi - Mohammad Javad Yazdanpanah
Design of Dual Frequency Conformal Leaky-wave Holographic Antenna
Mohammad Amin Chaychi zadeh - Nader Komjani
On the Design of Highly Efficient Harmonic Tuned Wideband Class F-1/F Power Amplifier
Mohammad Reza Zeinali - Amir Hossein Aalipour - Hossein Shamsi
Family of Multifunctional Controllable Converters for Grid, Battery, and PV-Powered EV Charging Station Applications
Homayon Soltani Gohari - Amir Safaeinasab - Karim Abbaszadeh
Connective Reconstruction-based Novelty Detection
Seyyed Morteza Hashemi - Parvaneh Aliniya - Parvin Razzaghi
T-type L-2L De-Embedding Method for On-Wafer T-model Transmission Line Network
Milad Seyedi - Nasser Masoumi - Samad Sheikhaei
حسگر غیرتهاجمی تشخیص قندخون با استفاده از تکنیک مایکروویو بر مبنای تشدید فرکانسی
نازنین افشاری - سید محمد هاشمی - فاطمه گران قراخیلی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0