0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Application of Transfer Learning in Optimized Filter- Bank Regularized CSP to Classification of EEG Signals with Small Dataset
نویسندگان :
M. Moein Esfahani
1
Hossein Sadati
2
1- Faculty of Electrical Engineering K. N. Toosi University of Technology Tehran, Iran
2- Faculty of Electrical Engineering K. N. Toosi University of Technology Tehran, Iran
کلمات کلیدی :
Brain-Computer-Interface،BCI،EEG،Motor Imagery،FBRCSP،Common Spatial Pattern
چکیده :
Application of Brain-Computer Interface (BCI) systems to develop a path between brain and external devices, such as Electroencephalography (EEG) signal acquisition, is extensively under study in regard to brain electrical activities. EEG is an inexpensive brain cognition and imaging method with high temporal resolutions for feature extraction in Motor Imagery tasks. The common spatial pattern (CSP) and its optimized algorithms are effective methods for discriminating and classifying EEG Signals. To classify motor imagery tasks in EEG signals, we need to implement the CSP algorithm to extract features and discriminate spatial patterns based on movement tasks in two-class motor imagery signals. Furthermore, owing to the amount of noise in EEG signals and the limited number of trials per subject, we need to optimize the conventional CSP algorithm by adding a penalty term in the denominator of the CSP cost functions. In this study, due to differences in each subject's neural activities, we employed transfer learning which used the information for other subjects to regulate features of the subject. Additionally, BCI Competition III dataset IVa was analyzed. Furthermore, this study presents the optimized Filter Bank Regularized CSP algorithm with Transfer Learning to perform the classification of the electroencephalography (EEG) motor imagery signals. Moreover, to compare the efficiency of the proposed algorithm, the conventional CSP and the proposed optimized CSP have been weighed, and results for both methods are presented. The results at the end explain that the classification with 10-fold cross-validation in comparison with that of the proposed method achieves approximately 15% and 21% higher accuracy against the R-CSP and conventional CSP, respectively.
لیست مقالات
لیست مقالات بایگانی شده
Real-Time Object Detection and Depth Estimation in Quadcopters through Intelligent Image Processing with YOLOv8
Amir Mahdavi - Mojtaba Mohsen Haghighi - Saeed Khankalantary
بهبود پردازش وفقی فضا-زمان (STAP) در سیستمهای رادار هوابرد با استفاده از الگوریتمهای آگاه به تنک بودن (Sparsity) سیستم
علی شیخیان - سارا میهن دوست - نعمت الله عزتی - احسان مصطفی پور
Privacy-Preserving Model Predictive Control Using Secure Multi-Party Computation
Saeed Adelipour - Mohammad Haeri
Design and Practical Implementation of Internal Model Controller for Temperature Regulation of Thermoelectric Cell
Parastoo Kamali - Sanaz Iman Shayan - Mahshid Mousapour - Fatemeh Abdolsamadi - Salar Zeinali - Sadra Rafatnia
Passive and Active Rectifier Combination for Hybrid Piezoelectric and Radio Frequency Energy Harvesting System
Mohammad reza Esaei - Mostafa Noohi - Ali Mirvakili
Phase-Only Array Antenna Beamforming with Minimum Peak Sidelobe Level and Minimum Power Loss Criteria
Mahdi Hatam
Integrated strategy for segment BRATS using co-operation of FCM and TL under abnormal behavior of noises
Arman Zafaranchi - Pedram Salehpoor
Social Welfare Maximization with Demand Response Program Using Stackelberg Game Theory
Mahtab Seyyedi - Ebrahim Pirmoradi - Turaj Amraee
مدلسازی محدودیت های عملی سیستم های ترکیبی انرژی الکتریکی- حرارتی با استفاده از تبدیلات پیشرفته برنامهریزی ریاضی
ریحانه حسن آبادی - حسین شریف زاده
Sensor Faults Diagnosis in T-S Fuzzy Discrete Descriptor Systems Using Design a New Unknown Input Observer
Masoud Shafiee - Amir Abolfazl Suratgar - Mehdi Mirshahi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4