0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Connective Reconstruction-based Novelty Detection
نویسندگان :
Seyyed Morteza Hashemi
1
Parvaneh Aliniya
2
Parvin Razzaghi
3
1- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
2- University of Nevada, Reno
3- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
کلمات کلیدی :
Novelty class detection،Out-of-distribution detection،Computer vision،Deep learning
چکیده :
Detection of out-of-distribution samples is one of the critical tasks for real-world applications of computer vision. The advancement of deep learning has enabled us to analyze real-world data which contain unexplained samples, accentuating the need to detect out-of-distribution instances more than before. GAN-based approaches have been widely used to address this problem due to their ability to perform distribution fitting; however, they are accompanied by training instability and mode collapse. We propose a simple yet efficient reconstruction-based method that avoids adding complexities to compensate for the limitations of GAN models while outperforming them. Unlike previous reconstruction-based works that only utilize reconstruction error or generated samples, our proposed method simultaneously incorporates both of them in the detection task. Our model, which we call "Connective Novelty Detection" has two subnetworks, an autoencoder, and a binary classifier. The autoencoder learns the representation of the positive class by reconstructing them. Then, the model creates negative and connected positive examples using real and generated samples. Negative instances are generated via manipulating the real data, so their distribution is close to the positive class to achieve a more accurate boundary for the classifier. To boost the robustness of the detection to reconstruction error, connected positive samples are created by combining the real and generated samples. Finally, the binary classifier is trained using connected positive and negative examples. We demonstrate a considerable improvement in novelty detection over state-of-the-art methods on MNIST and Caltech-256 datasets.
لیست مقالات
لیست مقالات بایگانی شده
Autonomous Guidance and Control of Satellite Formation Flying Based on Q-Learning with Collision Avoidance Capability
Hamid Mohsennezhad - Mohammadrasoul Kankashvar - Hossein Bolandi
Precise model extraction for Li-Ion batteries using segmented Columb counting and Kalman filtering
Ali Fotokkiani - Ali Ghanbarian - Amirhossein Esteghamat - Ali Fotowat-Ahmady - Farzad Tahami
یادگیری متری عمیق جهت شناسایی افراد
امیرعلی نسیمی - مهران صفایانی - مائده احمدی - عبدالرضا میرزائی
گیمیفیکیشن یک رویکرد نوآورانه جهت کاهش مصرف برق دربخش خانگی
حمید حقرجو - مرضیه زارع زاده کللی - مهدی اشکپور مطلق
ارائه روشی مبتنی بر دایجسترای پویا جهت مسیریابی بهینه در شبکه ترافیک شهری
طه واجدسمیعی - منیره عبدوس
The Design of Fractional I-LQR Controller for Constrained Quadrotor Using Grasshopper Optimization Algorithm
Vahid Safari Dehnavi - Masoud Shafiee
امنیت سایبری در مواجه با تزریق اطلاعات نادرست به سیستم قدرت هوشمند و ارائه راهکار مقابله
مهدی جمشیدی آفارانی - مهرداد عابدی
Application of Floquet theory in three-body problem: Periodic attitude motion
Ehsan Abbasali - Amirreza Kosari - Majid Bakhtiari
Si/SiO2/Ag optical sensor
Alireza Karimpour - Mehrdad Naemi Dehkharghani - Faramarz Hossein-babaei
Designing a delay line independent of PVT (Process, Voltage, Temperature) and applying it to a TDC (Time to Digital Converter)
Sepehr Zare Teimoori - Mehdi Ehsanian
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0