0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Connective Reconstruction-based Novelty Detection
نویسندگان :
Seyyed Morteza Hashemi
1
Parvaneh Aliniya
2
Parvin Razzaghi
3
1- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
2- University of Nevada, Reno
3- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
کلمات کلیدی :
Novelty class detection،Out-of-distribution detection،Computer vision،Deep learning
چکیده :
Detection of out-of-distribution samples is one of the critical tasks for real-world applications of computer vision. The advancement of deep learning has enabled us to analyze real-world data which contain unexplained samples, accentuating the need to detect out-of-distribution instances more than before. GAN-based approaches have been widely used to address this problem due to their ability to perform distribution fitting; however, they are accompanied by training instability and mode collapse. We propose a simple yet efficient reconstruction-based method that avoids adding complexities to compensate for the limitations of GAN models while outperforming them. Unlike previous reconstruction-based works that only utilize reconstruction error or generated samples, our proposed method simultaneously incorporates both of them in the detection task. Our model, which we call "Connective Novelty Detection" has two subnetworks, an autoencoder, and a binary classifier. The autoencoder learns the representation of the positive class by reconstructing them. Then, the model creates negative and connected positive examples using real and generated samples. Negative instances are generated via manipulating the real data, so their distribution is close to the positive class to achieve a more accurate boundary for the classifier. To boost the robustness of the detection to reconstruction error, connected positive samples are created by combining the real and generated samples. Finally, the binary classifier is trained using connected positive and negative examples. We demonstrate a considerable improvement in novelty detection over state-of-the-art methods on MNIST and Caltech-256 datasets.
لیست مقالات
لیست مقالات بایگانی شده
The Conduction Mechanism in Micron-Thick ZnO Layers Grown on Si Substrates by Spray Pyrolysis
Mohsen Gharesi - Alireza Karimpour - Reza Razmand - Faramarz Hossein-Babaei
A 23.4-31.9 GHz Tunable RF-MEMS Impedance Matching Network for 5G Power Amplifier
Fazel Ziraksaz - Alireza Hassanzadeh
Inexpensive fabrication of stretchable dry EEG electrodes using well known dry film photoresists
Mohammad Sadegh Rasekh - Amir Jahanshahi - Hassan Ghafoorifard
Simultaneous Stabilization of Constrained Singular Time-delay Systems
Emad Jafari - Tahereh Binazadeh
Higher-order semi-blind source separation approaches using Canonical Polyadic (CP) decomposition
Mohammad Jalilpour Monesi - Sepideh Hajipour Sardouie
Effective Rate Analysis of MISO Wireless Communication Systems over EGK Fading Channels
ّfereshteh Salimian Rizi - Abolfazl Falahati
طراحی کنترلکننده مد لغزشی دینامیک برای سیستم تعلیق فعال غیر خطی با عملگر غیرایدهآل
مونا عظیمی - الهه مرادی
Modeling and optimal control of the vibration model of constrained buildings based on fractional order singular theory using orthogonal polynomials
Vahid Safari Dehnavi - Masoud Shafiee
An Improved Version of the SIPO Algorithm with Fast Convergence Speed
Amir Soltany Mahboob - Hadi Shahriar Shahhoseini - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
Using GA and ML to Improve LoRa Network Performance
Yas Hosseini Tehrani - Seyed mojtaba Atarodi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1