0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Connective Reconstruction-based Novelty Detection
نویسندگان :
Seyyed Morteza Hashemi
1
Parvaneh Aliniya
2
Parvin Razzaghi
3
1- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
2- University of Nevada, Reno
3- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
کلمات کلیدی :
Novelty class detection،Out-of-distribution detection،Computer vision،Deep learning
چکیده :
Detection of out-of-distribution samples is one of the critical tasks for real-world applications of computer vision. The advancement of deep learning has enabled us to analyze real-world data which contain unexplained samples, accentuating the need to detect out-of-distribution instances more than before. GAN-based approaches have been widely used to address this problem due to their ability to perform distribution fitting; however, they are accompanied by training instability and mode collapse. We propose a simple yet efficient reconstruction-based method that avoids adding complexities to compensate for the limitations of GAN models while outperforming them. Unlike previous reconstruction-based works that only utilize reconstruction error or generated samples, our proposed method simultaneously incorporates both of them in the detection task. Our model, which we call "Connective Novelty Detection" has two subnetworks, an autoencoder, and a binary classifier. The autoencoder learns the representation of the positive class by reconstructing them. Then, the model creates negative and connected positive examples using real and generated samples. Negative instances are generated via manipulating the real data, so their distribution is close to the positive class to achieve a more accurate boundary for the classifier. To boost the robustness of the detection to reconstruction error, connected positive samples are created by combining the real and generated samples. Finally, the binary classifier is trained using connected positive and negative examples. We demonstrate a considerable improvement in novelty detection over state-of-the-art methods on MNIST and Caltech-256 datasets.
لیست مقالات
لیست مقالات بایگانی شده
A Real Time MPC-Based Strategy for PV Plant with Battery Energy Storage
Mohammad Amini - Sajad Esmaeili - Mohammad Sayadlou - Amir Khorsandi - Seyed Hossein Hosseinian
بهبود بازدهی انرژی در اینترنت اشیاء باند باریک با وفقیسازی لینک به کمک یادگیری عمیق
سمانه امیریان - محمدعلی سبقتی
Data Association and Multi-Target Localization Using Particle Swarm Optimization
Seyed Mohammad B. Seyedin - Fereidoon Behnia
Analyzing, simulating and measuring the effects of stirrers and walls on the performance of the RTS60 reverberation chamber
Mojtaba Basravi - Zakerhossein Firouzeh - Hadi Aliakbarian
Autonomous, Bio-inspired vision-based navigation system for indoor flying using hybrid optical flow and stereopsis methods
Masoud Mohtadifar - Hadi Seyedarabi
Comparison of Channel Selection Methods for EEG Signal Classification
Soraya Charkas - MohammadBagher Shamsollahi
STAR-RIS Secrecy Rate Analysis in the Presence of Energy Harvesting Eavesdroppers
Mohammad Reza Kavianinia - Mohammad Javad Emadi
بررسی تاثیر اعمال پوشش مش متال در مقاومت حرارتی و خوردگی سیم فولادی استحکام بالا بعنوان مغزی هادی های پرظرفیت ACSS
فائزه راد - مهرنوش طاهرخانی - ناصر میرشاه ولایتی - عبداله جواهری
The Use of Additive Decomposition and Deep Neural Network for Photovoltaic Power Forecasting
Fariba Dehghan - Mohsen Parsa Moghaddam - Maryam Imani
بررسی اثر پیرشدگی بر میدان الکتریکی و جریان نشتی در مقرههای پلیمری آلوده با شبیهسازی به روش اجزای محدود
محمد گودرزی - سید محمد شهرتاش - احمد غلامی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4