0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Connective Reconstruction-based Novelty Detection
نویسندگان :
Seyyed Morteza Hashemi
1
Parvaneh Aliniya
2
Parvin Razzaghi
3
1- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
2- University of Nevada, Reno
3- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
کلمات کلیدی :
Novelty class detection،Out-of-distribution detection،Computer vision،Deep learning
چکیده :
Detection of out-of-distribution samples is one of the critical tasks for real-world applications of computer vision. The advancement of deep learning has enabled us to analyze real-world data which contain unexplained samples, accentuating the need to detect out-of-distribution instances more than before. GAN-based approaches have been widely used to address this problem due to their ability to perform distribution fitting; however, they are accompanied by training instability and mode collapse. We propose a simple yet efficient reconstruction-based method that avoids adding complexities to compensate for the limitations of GAN models while outperforming them. Unlike previous reconstruction-based works that only utilize reconstruction error or generated samples, our proposed method simultaneously incorporates both of them in the detection task. Our model, which we call "Connective Novelty Detection" has two subnetworks, an autoencoder, and a binary classifier. The autoencoder learns the representation of the positive class by reconstructing them. Then, the model creates negative and connected positive examples using real and generated samples. Negative instances are generated via manipulating the real data, so their distribution is close to the positive class to achieve a more accurate boundary for the classifier. To boost the robustness of the detection to reconstruction error, connected positive samples are created by combining the real and generated samples. Finally, the binary classifier is trained using connected positive and negative examples. We demonstrate a considerable improvement in novelty detection over state-of-the-art methods on MNIST and Caltech-256 datasets.
لیست مقالات
لیست مقالات بایگانی شده
Robust Consensus for Descriptor Multi-agent Systems with Uncertainties in all Matrices
Abolfazl Saadati Moghadam - Ehsan Ranjbar - Amir Abolfazl Suratgar - Hajar Atrianfar
Index and impulse in Singular Biological Continuous Systems
Behnam Babaei - Masoud Shafiee
Reduction of Common-Mode Voltage in Cascaded H-Bridge Inverter Under Faulty Conditions
Ashkan Raki - Yousef Neyshabouri - Hossein Iman-Eini - Mahdi Aslanian
Swin Wavelet Super Resolution
Zahra Moammeri - Ahmad Mahmoudi-Aznaveh
Robust Neuro-Adaptive Fuzzy Sliding Mode Control for a Remotely Operated Underwater Vehicle Manipulator
Mahdi Armoon - Marzie Lafouti - Babak Tavassoli - Hamid D. Taghirad
Integration of Deep Learning Techniques in Stock Market Forecasting: xLSTM-CNN with RevIN and Adaptive Wavelet Denoising
Alireza Mohammadi - Ali Doustmohammadi - Masoud Shafiee
Optimal Control of Rectangular Singular Systems
Masoud Shafiee
طراحی کنترلکننده مد لغزشی دینامیک برای سیستم تعلیق فعال غیر خطی با عملگر غیرایدهآل
مونا عظیمی - الهه مرادی
Evaluation Study of Different Integration Methods of LCC Compensation Network for Various Types of Magnetic Structures of Wireless Power Transfer
Nima Rasekh - Navid Rasekh - Mojtaba Mirsalim
Finite time disturbance observer based output feedback fractional order nonsingular terminal sliding mode attitude control of rigid satellites
Shirko Piri - Jalil Beyramzad - Esmaeel Khanmirza
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2