0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Enhancing SCGAN’s Disentangled Representation Learning with Contrastive SSIM Similarity Constraints
نویسندگان :
Iman Yazdanpanah
1
Ali Eslamian
2
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Generative Adversarial Nets،Unsupervised Learning،Disentangled Representation Learning،Contrastive Disentanglement،SSIM
چکیده :
SCGAN adds a similarity constraint between generated images and conditions as a regularization term on generative adversarial networks. Similarity constraint works as a tutor to instruct the generator network to comprehend the difference in representations based on conditions. We understand how SCGAN works on a deeper level. This understanding makes us realize that the similarity constraint functions like the contrastive loss function. Two major changes we applied to SCGAN to make a modified model are using SSIM to measure similarity between images and applying contrastive loss principles to the similarity constraint. The modified model performs better using FID and Factor metrics. On the MNIST and Fashion-MNIST datasets, the modified model achieves log-likelihood values of 234.8 and 332.6, respectively, surpassing SCGAN’s 232.5 and 324.2. The modified model exhibits improvements in FID, attaining values of 3.42 and 12.97 for MNIST and Fashion-MNIST, respectively, compared to SCGAN’s 4.11 and 14.63. In terms of disentanglement, the modified model shows clear advantages, achieving values of 0.89 and 0.91 for MNIST and Fashion-MNIST, respectively, compared to SCGAN’s 0.77 and 0.89. These improvements show that the modified model has effectively learned a more disentangled representation compared to SCGAN. The modified model also has better generalisability compared to other models.
لیست مقالات
لیست مقالات بایگانی شده
A 30dB and 250μW High Linear Variable Gain Amplifier with Employing Gm-boosting and Common Mode Feedforward Techniques
Mehdi Shahabi
Improving the Performance and Robustness of Non-Minimum Phase Systems Using Integrated Feedforward-IMC Technique
Saeedreza Tofighi
مدل سازی و شبیه سازی جداکننده پرتو کوانتومی و تداخل گر ماخ زندر کوانتومی
محمد جواد شریفی
Identifying Influential Nodes in Complex Networks by Multiple Attributes Model
Shima Esfandiari - Mostafa Fakhrahmad
روشی نوین مبتنی بر سیمپلکسهای متوالی برای غلبه بر چالشهای حل پخش بار بهینه
فاطمه زاده محمدی - حسین شریف زاده
ادغام حسگرهای رادار، لیدار و دوربین به منظور بهبود عملکرد در تشخیص اهداف برای کاربرد خودروهای خودران
سید مسعود معصومی زاده - محمد سجادی - طاها محقق - منصور نادرپور - صادق شاه سنایی - محمد علی مددی - زهرا کاوه وش - علی فتوت احمدی
Integration of Deep Learning Techniques in Stock Market Forecasting: xLSTM-CNN with RevIN and Adaptive Wavelet Denoising
Alireza Mohammadi - Ali Doustmohammadi - Masoud Shafiee
A New High Voltage Gain Z-Source Based DC-DC Converter for High-Power DG Applications
Sakina Bakhshi - Reza Beiranvand
Hybrid-Excited, Variable-Flux, and Inter-Modular Biased-Flux Motors: A Comparative Analysis
Mohammad Amirkhani - Ehsan Farmahini Farahani - Alireza Eikani - Mojtaba Mirsalim - Javad Shokrollahi Moghani
ارائه روشی مبتنی بر دایجسترای پویا جهت مسیریابی بهینه در شبکه ترافیک شهری
طه واجدسمیعی - منیره عبدوس
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0