0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Intelligent Near-Infrared Spectroscopy for Blood Glucose Level Classification
نویسندگان :
Shahrooz Sharifi
1
Amirhossein Maddah-Torghabehi
2
Mohammad-Reza Akbarzadeh-Totonchi
3
1- دانشگاه فردوسی مشهد
2- دانشگاه فردوسی مشهد
3- دانشگاه فردوسی مشهد
کلمات کلیدی :
Blood Glucose،Photoplethysmography signal،NIR Spectroscopy،Biomedical Signal Processing،Feature Extraction،Machine Learning،Classification،Confusion Matrix
چکیده :
Diabetes Mellitus is a disease characterized by inadequate control of blood glucose levels, and it ranks among the leading causes of human mortality, the measurement of which, requires fingertip pricking. Nowadays, non-invasive healthcare monitoring systems based on wearable sensors and machine learning models hold the future of smart health. However, the nature of these methods is such that they get affected by internal physiological and external parameters, which is one of the obstacles to this path. This study aims to introduce a non-invasive blood glucose level classification method based on machine learning analysis. The device’s sensor consists of an optical finger sensor that transmits near-infrared light, filtering, and amplification to reduce the noise of the extracted photoplethysmography signal. Moreover, we have adopted the four-stage framework of biomedical signal processing to analyze the acquired PPG signal. Before using the Savitzky-Golay derivation to pre-filter the signal and prepare it for feature extraction, it was normalized using Standard Normal Variate (SNV). In addition, four different machine learning models, including Support Vector Machine (SVM), Weighted K-Nearest Neighbors (KNN), Wide Neural Network, and Decision Tree were used for blood glucose level classification. For this study, a dataset was created consisting of 106 data, gathered from 27 subjects. Findings revealed that the Weighted KNN exhibited the best performance among other classification models, having 90.5% accuracy.
لیست مقالات
لیست مقالات بایگانی شده
Vibration Analysis of a High-Speed Switched Reluctance Motor Considering Fast Demagnetization Voltage
Nasrin Majlesi - Amir Rashidi - Morteza Saghaian Nejad
Second-order Sliding Mode Control for DC-DC buck converter with input Voltage Ripple Elimination
Maede Azimi - Mehdi Asadi - Adel Zakipour
Learning-Based Routing Policy For Wireless Sensor Networks
Najim Halloum - Yousef Darmani - Ali Ahmadi
Robust Neuro-Adaptive Fuzzy Sliding Mode Control for a Remotely Operated Underwater Vehicle Manipulator
Mahdi Armoon - Marzie Lafouti - Babak Tavassoli - Hamid D. Taghirad
طراحی تنظیمکنندهی خروجی بهینهی مبتنی بر یادگیری تقویتی ایمن با استفاده از تابع مانع کنترلی نمایی
سیدرضا اصغری - سعید شمقدری
Human detection and following by a mobile robot using YOLO structured convolutional neural network
Yasan Majidi - Amir Hossein Hassanabadi
Design of a Controllable and State-observable MEMS Nonlinear Resonator Based on the Awl-shaped Serpentine Spring
Ehsan Ranjbar - Amirabolfazl Suratgar
پنل بازیابی: نرم افزار بازیابی سیستمهای قدرت با قیود امنیتی
سجاد نجفی روادانق - رسول اسماعیل زاده - رضا فرتاش
Family of Soft-Switched Single-Switch Switched-Resonator Converters with Low Component Count
Maryam Hajilou - Siamak Khalili - Hosein Farzanehfard
بررسی اثر پیرشدگی بر میدان الکتریکی و جریان نشتی در مقرههای پلیمری آلوده با شبیهسازی به روش اجزای محدود
محمد گودرزی - سید محمد شهرتاش - احمد غلامی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0