0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Intelligent Near-Infrared Spectroscopy for Blood Glucose Level Classification
نویسندگان :
Shahrooz Sharifi
1
Amirhossein Maddah-Torghabehi
2
Mohammad-Reza Akbarzadeh-Totonchi
3
1- دانشگاه فردوسی مشهد
2- دانشگاه فردوسی مشهد
3- دانشگاه فردوسی مشهد
کلمات کلیدی :
Blood Glucose،Photoplethysmography signal،NIR Spectroscopy،Biomedical Signal Processing،Feature Extraction،Machine Learning،Classification،Confusion Matrix
چکیده :
Diabetes Mellitus is a disease characterized by inadequate control of blood glucose levels, and it ranks among the leading causes of human mortality, the measurement of which, requires fingertip pricking. Nowadays, non-invasive healthcare monitoring systems based on wearable sensors and machine learning models hold the future of smart health. However, the nature of these methods is such that they get affected by internal physiological and external parameters, which is one of the obstacles to this path. This study aims to introduce a non-invasive blood glucose level classification method based on machine learning analysis. The device’s sensor consists of an optical finger sensor that transmits near-infrared light, filtering, and amplification to reduce the noise of the extracted photoplethysmography signal. Moreover, we have adopted the four-stage framework of biomedical signal processing to analyze the acquired PPG signal. Before using the Savitzky-Golay derivation to pre-filter the signal and prepare it for feature extraction, it was normalized using Standard Normal Variate (SNV). In addition, four different machine learning models, including Support Vector Machine (SVM), Weighted K-Nearest Neighbors (KNN), Wide Neural Network, and Decision Tree were used for blood glucose level classification. For this study, a dataset was created consisting of 106 data, gathered from 27 subjects. Findings revealed that the Weighted KNN exhibited the best performance among other classification models, having 90.5% accuracy.
لیست مقالات
لیست مقالات بایگانی شده
Combination of Classifiers to Detecting Grade of Gliblastoma using MRS
Roqaie Moqadam - Nazila Loghmani - Meysam Siyahmansoori - Armin Allahverdy
Fabrication, Simulation and Modeling of a T-Shaped Coaxial Stub Resonator
Abolfazl Ebrahimpour - Sepehr Sahab - Javad Shokri Seyyedi - Younes Sahranavard - Gholamreza Moradi
CNN-LSTM model for Confusion Classification; using Single-Channel EEG
Amirhossein Aran - Zahra Ghanbari - Mohammad Hassan Moradi
تعیین نقشه راه مناسب شرکتهای توزیع کشور در زمینه مدیریت سمت تقاضا
محمدرحیم محمدی
تخمین بهینه پارامترهای مدل یک ماژول فتوولتائیک توسط الگوریتم بهینه سازی Mayfly
پریسا اکبری - نجمه اقبال
Design and fabrication of wearable and stretchable EEG headband using textile-based electrode wire
Kourosh Motiepor - Arman Modoudi Yaghouti - Simin Bakhtiyari - Amir Jahanshahi - Roohollah Bagherzadeh
A Comprehensive Analysis of a Digital Control Strategy for Photovoltaic-Based Single-Phase Grid-Tied Inverter Systems
Soheil Hasani Sangani - Mohamad Reza Moslemnejad - Mojtaba Saeedi - Alireza Jalalitalab - Reza Beiranvand
Inversion Coefficient as a Key Design Parameter in MOS Device Performance
Gholamreza Khademevatan - Ali Jalali
The Conduction Mechanism in Micron-Thick ZnO Layers Grown on Si Substrates by Spray Pyrolysis
Mohsen Gharesi - Alireza Karimpour - Reza Razmand - Faramarz Hossein-Babaei
Development of Iterative Learning Control Method for Trajectory Tracking in Two-Dimensional Discrete-Time Systems
Meysam Azhdari - Tahereh Binazadeh - Soheila Abedi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2