0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Intelligent Near-Infrared Spectroscopy for Blood Glucose Level Classification
نویسندگان :
Shahrooz Sharifi
1
Amirhossein Maddah-Torghabehi
2
Mohammad-Reza Akbarzadeh-Totonchi
3
1- دانشگاه فردوسی مشهد
2- دانشگاه فردوسی مشهد
3- دانشگاه فردوسی مشهد
کلمات کلیدی :
Blood Glucose،Photoplethysmography signal،NIR Spectroscopy،Biomedical Signal Processing،Feature Extraction،Machine Learning،Classification،Confusion Matrix
چکیده :
Diabetes Mellitus is a disease characterized by inadequate control of blood glucose levels, and it ranks among the leading causes of human mortality, the measurement of which, requires fingertip pricking. Nowadays, non-invasive healthcare monitoring systems based on wearable sensors and machine learning models hold the future of smart health. However, the nature of these methods is such that they get affected by internal physiological and external parameters, which is one of the obstacles to this path. This study aims to introduce a non-invasive blood glucose level classification method based on machine learning analysis. The device’s sensor consists of an optical finger sensor that transmits near-infrared light, filtering, and amplification to reduce the noise of the extracted photoplethysmography signal. Moreover, we have adopted the four-stage framework of biomedical signal processing to analyze the acquired PPG signal. Before using the Savitzky-Golay derivation to pre-filter the signal and prepare it for feature extraction, it was normalized using Standard Normal Variate (SNV). In addition, four different machine learning models, including Support Vector Machine (SVM), Weighted K-Nearest Neighbors (KNN), Wide Neural Network, and Decision Tree were used for blood glucose level classification. For this study, a dataset was created consisting of 106 data, gathered from 27 subjects. Findings revealed that the Weighted KNN exhibited the best performance among other classification models, having 90.5% accuracy.
لیست مقالات
لیست مقالات بایگانی شده
Design and Implementation of a Data-Driven Controller for a Two-Wheeled Self-Balancing Robot
Mohammad Akhavan - Haniye Parvahan - Mojtaba Nouri Manzar
Achieving a Wide Range of Voltage Gain in Three-Phase LLC Resonant Converter Using Hybrid Control of Variable Frequency and Variable Magnetizing Inductor
Saeed Ramezani darvish - Salar Sadeghian - Adib Abrishamifar
A Digital Method for Offset Cancellation of Fully Dynamic Latched Comparators
Alireza Ahrar - Mohammad Yavari
FGM Copula based Analysis of Outage Probability for Wireless Three-User Multiple Access Channel with Correlated Channel Coefficients
Mona Sadat Mohsenzadeh - Ghosheh Abed Hodtani
Underwater Image Quality Assessment via Color and Contrast Analysis
Meysam Ghalyani - Maryam Karimi
تخمین نرختنفس با استفاده از ترکیب ویژگیهای سیگنال فوتوپلتیسموگرافی و مدل FCM-ANFIS
علیرضا باغبانی - سیده فاطمه مولایی زاده
طراحی کنترل کننده مقاوم برای مدل غیرخطی بیماری کووید-19
آرمان مرزبان - الهام امینی بروجنی
A New Method on Failure Detection of Fixed and Moving Contacts of Circuit Breakers
Hassan Hamidi - Ali Asghar Razi Kazemi
High Step up DC/DC Converter with Low Input Current Ripple and Low Voltage Stress on Semiconductors
Saed Mahmoud Alilou - Mohammad Maalandish - Soheil Nouri - Seyed Hossein Hosseini
Energy Allocation Methods in NOMA Modulation Using Machine Learning Algorithms in the Presence of Jamming
Khashayar Saremi - Bahareh Akhbari
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3