0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Intelligent Near-Infrared Spectroscopy for Blood Glucose Level Classification
نویسندگان :
Shahrooz Sharifi
1
Amirhossein Maddah-Torghabehi
2
Mohammad-Reza Akbarzadeh-Totonchi
3
1- دانشگاه فردوسی مشهد
2- دانشگاه فردوسی مشهد
3- دانشگاه فردوسی مشهد
کلمات کلیدی :
Blood Glucose،Photoplethysmography signal،NIR Spectroscopy،Biomedical Signal Processing،Feature Extraction،Machine Learning،Classification،Confusion Matrix
چکیده :
Diabetes Mellitus is a disease characterized by inadequate control of blood glucose levels, and it ranks among the leading causes of human mortality, the measurement of which, requires fingertip pricking. Nowadays, non-invasive healthcare monitoring systems based on wearable sensors and machine learning models hold the future of smart health. However, the nature of these methods is such that they get affected by internal physiological and external parameters, which is one of the obstacles to this path. This study aims to introduce a non-invasive blood glucose level classification method based on machine learning analysis. The device’s sensor consists of an optical finger sensor that transmits near-infrared light, filtering, and amplification to reduce the noise of the extracted photoplethysmography signal. Moreover, we have adopted the four-stage framework of biomedical signal processing to analyze the acquired PPG signal. Before using the Savitzky-Golay derivation to pre-filter the signal and prepare it for feature extraction, it was normalized using Standard Normal Variate (SNV). In addition, four different machine learning models, including Support Vector Machine (SVM), Weighted K-Nearest Neighbors (KNN), Wide Neural Network, and Decision Tree were used for blood glucose level classification. For this study, a dataset was created consisting of 106 data, gathered from 27 subjects. Findings revealed that the Weighted KNN exhibited the best performance among other classification models, having 90.5% accuracy.
لیست مقالات
لیست مقالات بایگانی شده
Transfer learning using deep convolutional neural network for predicting dementia severity
Vahid Asayesh - Mehdi Dehghani - Majid Torabi Nikjeh - Sepideh Akhtari khosrowshahi
طراحی و شبیهسازی یک آرایه انعکاسی پهن باند به کمک روش چرخش قطبش موج بازتابی و سنتز فاز چند فرکانسی روزنه آنتن
مجید کریمی پور - ایمان آریانیان
A compact 5G MIMO antenna with reduced mutual coupling
Marziyeh Amiri - Ali Ghafoorzadeh-yazdi - Abbas-Ali Heidari
E-RESO: An Enhanced Time Redundancy-based Error Detection Approach for Arithmetic Operations
Sina Shahoveisi - Athena Abdi
Development of Iterative Learning Control Method Based on Markov Parameters for High-Order Discrete-Time Singular Systems
Meysam Azhdari - Tahereh Binazadeh - Ali Gholami
Control of a Wheeled Robot in the Presence of Wheels Sliding Using Robust Adaptive Control in Differential Game Format
Alireza Azimi - Roya Amjadifard - Aliakbar Ghasemzadeh
Forecasting Crude Oil Prices using improved deep belief network (IDBN) and long-term short-term memory network (LSTM)
Mohammad Mahdi Lotfi Heravi - Mahsa Khorrampanah - Monireh Houshmand
Design of Dual-beam Orthogonal Circular Polarized Leaky-wave Holographic Antenna
Mohammad Amin Chaychizadeh - Nader Komjani
استفاده از طیفنگاری مادون قرمز نزدیک کارکردی جهت بررسی اثر پشیمانی بر تصمیمگیری خودکنترلی
جاوید بکرانی - سید کمال الدین ستاره دان - عبدالحسین وهابی
Model Predictive Control for Optimal Drug Administration of Cancer Chemotherapy
Zahra Hosseinpour - Amirhossein Nikoofard - Erfan Nejabat
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4