0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Intelligent Near-Infrared Spectroscopy for Blood Glucose Level Classification
نویسندگان :
Shahrooz Sharifi
1
Amirhossein Maddah-Torghabehi
2
Mohammad-Reza Akbarzadeh-Totonchi
3
1- دانشگاه فردوسی مشهد
2- دانشگاه فردوسی مشهد
3- دانشگاه فردوسی مشهد
کلمات کلیدی :
Blood Glucose،Photoplethysmography signal،NIR Spectroscopy،Biomedical Signal Processing،Feature Extraction،Machine Learning،Classification،Confusion Matrix
چکیده :
Diabetes Mellitus is a disease characterized by inadequate control of blood glucose levels, and it ranks among the leading causes of human mortality, the measurement of which, requires fingertip pricking. Nowadays, non-invasive healthcare monitoring systems based on wearable sensors and machine learning models hold the future of smart health. However, the nature of these methods is such that they get affected by internal physiological and external parameters, which is one of the obstacles to this path. This study aims to introduce a non-invasive blood glucose level classification method based on machine learning analysis. The device’s sensor consists of an optical finger sensor that transmits near-infrared light, filtering, and amplification to reduce the noise of the extracted photoplethysmography signal. Moreover, we have adopted the four-stage framework of biomedical signal processing to analyze the acquired PPG signal. Before using the Savitzky-Golay derivation to pre-filter the signal and prepare it for feature extraction, it was normalized using Standard Normal Variate (SNV). In addition, four different machine learning models, including Support Vector Machine (SVM), Weighted K-Nearest Neighbors (KNN), Wide Neural Network, and Decision Tree were used for blood glucose level classification. For this study, a dataset was created consisting of 106 data, gathered from 27 subjects. Findings revealed that the Weighted KNN exhibited the best performance among other classification models, having 90.5% accuracy.
لیست مقالات
لیست مقالات بایگانی شده
A New High Voltage Gain Z-Source Based DC-DC Converter for High-Power DG Applications
Sakina Bakhshi - Reza Beiranvand
Angular Misalignment Effect on the Performance of Underwater MIMO OCC Systems
Ehsan Hamidnejad - Asghar Gholami
Plasmonic Refractive Index Sensor Using a Metal-Insulator-Metal Waveguide with a Disk-shaped Cavity and Silver Nanorod Defects
Mohammad Ghanavati - Mohammad-Azim Karami
Design of Dual-Band Triangular Microstrip Antenna Using Fractal Structure for Wi-Max and Wi-Fi Applications
Arian Mianji - Mohammad Bemani - Saeid Nikmehr - Ahmad Atashpaz Gargari
A Design Methodology for Submicron Low-Voltage Bandgap Voltage Reference
Mehdi Samavati - Samad Sheikhaei - Mohsen Jalali
Formation Control of Bicycle Model of Mobile Robots with Disturbance Using PID Controller
Amirhossein Rahmankhanloo - Saeed Khankalantary - Ali Akbar Vahedi
مدلسازی ترانسفورماتورهای کم تلفات در شرایط عملکرد غیرعادی و بررسی تأثیر آن ها بر تلفات فنی شبکه قدرت
محمدرضا موسوی خادمی - غلامرضا زارع پلکوئی - مرتضی موسوی خادمی
Low-cost dielectrophoresis-based microfluidic chip for label-free particle separation with 3D electrodes
Fatemeh Esmaeili - Zeynab Alipour - Mehdi Fardmanesh
The Use of Additive Decomposition and Deep Neural Network for Photovoltaic Power Forecasting
Fariba Dehghan - Mohsen Parsa Moghaddam - Maryam Imani
Error Probability Analysis of Non-Orthogonal Multiple Access
Rozita Shafie - AliAkbar Tadaion - Zolfa Zeinalpour-Yazdi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4