0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Recurrence Quantification and Machine Learning: A Novel Approach for Parkinson’s Disease Diagnosis from EEG Signals
نویسندگان :
Asghar Zarei
1
Alireza Talesh Jafadideh
2
1- دانشگاه صنعتی سهند
2- دانشگاه تهران
کلمات کلیدی :
Parkinson's disease (PD)،Recurrence Quantification Analysis (RQA)،Electroencephalogram (EEG)،Machine Learning (ML)
چکیده :
Parkinson's disease (PD), the second most common neurodegenerative disorder globally, primarily involves deficiency of central nervous system dopamine. Hence, diagnosis of PD presents serious challenges and is usually a prolonged process without a standardized protocol. As a result, various studies have been conducted to find reliable biomarkers for PD. One such approach is through a characterization of EEG signal features. EEG records neuronal activity from electrodes placed on the skull, and with the advent of AI, EEG signal features have been incorporated into machine learning (ML) algorithms for assistance in automatically diagnosing neurological diseases. This suggests that EEG signals can be regarded as important biomarkers that may help discriminate PD patients from controls. In this study, we explore the potential of Recurrence Quantification Analysis (RQA) features calculated from EEG signals as biomarkers for PD. Based on publicly accessible data received from The Patient Repository for EEG Data + Computational Tools (PRED + CT), we analyzed EEG recordings of PD patients who were repeatedly submitted to auditory stimulation. We employed Support Vector Machine (SVM), K-Nearest Neighborhood (KNN), and Random Forest algorithms for the classification procedure and utilized a 10-fold cross-validation method. The proposed model achieved an average accuracy of 95.72 % separating PD patients from healthy controls using the SVM classifier. This indicates that RQA features from the EEG signals could serve as promising biomarkers for PD.
لیست مقالات
لیست مقالات بایگانی شده
Improving the Reliability of Multicore Embedded Systems through an Evolutionary-based Task Scheduling Approach
Athena Abdi - Hamid R Zarandi
Output feedback tube-based MPC for an LPV system using inexact scheduling variables
Nima Naeiji - Ali Akbar Afzalian - Arash Sadeghzadeh
کنترل بازوی ربات دو درجه آزادی با کنترلکننده مود لغزشی مرتبه کسری فازی-تطبیقی پایانهای
مائده نفیسی فر - متین جزءاسلامی - ابوالفضل جلیلوند - سمیرا نریمان پور - فرهاد بیات
همزمان سازی سمبلها در مخابرات مولکولی مبتنی بر انتشار
سمانه منطقی - علی جمشیدی
Observer-Based Control for impulsive switched systems with Uncertain inputs
Soheil Sheikh ahmadi - Farzad Hashemzadeh - Mohammad Ali Badamchizadeh
Design and Implementation of a Modular ROS-based Mobile Robot With Hierarchical Control
Erfan Riazati - Arian Hajizadeh - Seyed Majid Esmailzadeh
بازسازی تصاویر رادار دهانه مصنوعی با استفاده از نمایش تنک مبتنی بر گروه
محبوبه خدرزاده - صادق صمدی
Precise model extraction for Li-Ion batteries using segmented Columb counting and Kalman filtering
Ali Fotokkiani - Ali Ghanbarian - Amirhossein Esteghamat - Ali Fotowat-Ahmady - Farzad Tahami
Low Complexity Single-Snapshot DOA Estimation Using Adaptive Filtering
Mojtaba Amiri - Mohammadreza Nargesi - Ali Olfat
External Force Control with Disturbance Rejection for 6 DoF Manipulator
Zahra Bonakdar - Arefe Hamidipour - Hamed Ghafarirad
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2