0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Recurrence Quantification and Machine Learning: A Novel Approach for Parkinson’s Disease Diagnosis from EEG Signals
نویسندگان :
Asghar Zarei
1
Alireza Talesh Jafadideh
2
1- دانشگاه صنعتی سهند
2- دانشگاه تهران
کلمات کلیدی :
Parkinson's disease (PD)،Recurrence Quantification Analysis (RQA)،Electroencephalogram (EEG)،Machine Learning (ML)
چکیده :
Parkinson's disease (PD), the second most common neurodegenerative disorder globally, primarily involves deficiency of central nervous system dopamine. Hence, diagnosis of PD presents serious challenges and is usually a prolonged process without a standardized protocol. As a result, various studies have been conducted to find reliable biomarkers for PD. One such approach is through a characterization of EEG signal features. EEG records neuronal activity from electrodes placed on the skull, and with the advent of AI, EEG signal features have been incorporated into machine learning (ML) algorithms for assistance in automatically diagnosing neurological diseases. This suggests that EEG signals can be regarded as important biomarkers that may help discriminate PD patients from controls. In this study, we explore the potential of Recurrence Quantification Analysis (RQA) features calculated from EEG signals as biomarkers for PD. Based on publicly accessible data received from The Patient Repository for EEG Data + Computational Tools (PRED + CT), we analyzed EEG recordings of PD patients who were repeatedly submitted to auditory stimulation. We employed Support Vector Machine (SVM), K-Nearest Neighborhood (KNN), and Random Forest algorithms for the classification procedure and utilized a 10-fold cross-validation method. The proposed model achieved an average accuracy of 95.72 % separating PD patients from healthy controls using the SVM classifier. This indicates that RQA features from the EEG signals could serve as promising biomarkers for PD.
لیست مقالات
لیست مقالات بایگانی شده
قرارگیری بهینه سطوح هوشمند قابل تنظیم مجدد برای مکان یابی فرستنده
مهدی گودرزی - فریدون بهنیا - امین آقاتبار رودباری
A Lightweight Authentication Protocol For M2M Communication In IIoT Using Physical Unclonable Functions
Elaheh Kharghani - Saeed Aliakbari - Javad Bidad - Amir masoud Aminian moddares
بهبود تخصیص منابع لبهها در شبکه LTE مبتنی بر محاسبات لبه با رویکرد تعادل میان تاخیر و قابلیت اطمینان
ایمان عظیمی احمدآبادی - علی اکبر تدین تفت
A high speed method for features extraction in face recognition systems
Hosein Khorami - Hadishahriar Shahhoseini
Design and Simulation of Nano-Second Pulsed Power Generator for Cancer Treatment and Considering Load Effect
Reza PirNia - Maryam A.Hejazi - Nasrin Deldadeh
A New 10 Watt 1.6 GHz Linear Power Amplifier with More than 11 dB Gain
Marzieh Chegini - HojjatAllah Nemati - Mahmoud Kamarei
Efficient signal detection via compressive sensing in uplink massive MIMO systems
Soroush Mesforush Mashhad - Mojtaba Amiri - Ali Olfat
کاربرد داده کاوی در بخش مشترکین صنعت توزیع برق
سارا علی پور - محمودرضا حقی فام
Enhancing Kriging with Inductive Spatio-Temporal GraphODE
Amin Sheykhzadeh - Behzad Moshiri - Ebrahim Ghafar-Zadeh
Low-Loss, Low-Drive Voltage, and High-Bandwith Thin-Film Lithium Niobate Modulator Using Coaxial Transmission Line
Mohsen Karimian Kakolaki - Ahmad Bakhtafrouz - Parisa Karimi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0