0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Recurrence Quantification and Machine Learning: A Novel Approach for Parkinson’s Disease Diagnosis from EEG Signals
نویسندگان :
Asghar Zarei
1
Alireza Talesh Jafadideh
2
1- دانشگاه صنعتی سهند
2- دانشگاه تهران
کلمات کلیدی :
Parkinson's disease (PD)،Recurrence Quantification Analysis (RQA)،Electroencephalogram (EEG)،Machine Learning (ML)
چکیده :
Parkinson's disease (PD), the second most common neurodegenerative disorder globally, primarily involves deficiency of central nervous system dopamine. Hence, diagnosis of PD presents serious challenges and is usually a prolonged process without a standardized protocol. As a result, various studies have been conducted to find reliable biomarkers for PD. One such approach is through a characterization of EEG signal features. EEG records neuronal activity from electrodes placed on the skull, and with the advent of AI, EEG signal features have been incorporated into machine learning (ML) algorithms for assistance in automatically diagnosing neurological diseases. This suggests that EEG signals can be regarded as important biomarkers that may help discriminate PD patients from controls. In this study, we explore the potential of Recurrence Quantification Analysis (RQA) features calculated from EEG signals as biomarkers for PD. Based on publicly accessible data received from The Patient Repository for EEG Data + Computational Tools (PRED + CT), we analyzed EEG recordings of PD patients who were repeatedly submitted to auditory stimulation. We employed Support Vector Machine (SVM), K-Nearest Neighborhood (KNN), and Random Forest algorithms for the classification procedure and utilized a 10-fold cross-validation method. The proposed model achieved an average accuracy of 95.72 % separating PD patients from healthy controls using the SVM classifier. This indicates that RQA features from the EEG signals could serve as promising biomarkers for PD.
لیست مقالات
لیست مقالات بایگانی شده
مدلسازی ترانسفورماتورهای کم تلفات در شرایط عملکرد غیرعادی و بررسی تأثیر آن ها بر تلفات فنی شبکه قدرت
محمدرضا موسوی خادمی - غلامرضا زارع پلکوئی - مرتضی موسوی خادمی
Phase-Only Array Antenna Beamforming with Minimum Peak Sidelobe Level and Minimum Power Loss Criteria
Mahdi Hatam
SGG-Net: Skeleton and Graph-Based Neural Network Approaches for Grasping Objects
AliReza Beigy - Farbod Azimmohseni - Ali Sabzejou - Mehdi Tale Masouleh - Ahmad Kalhor
Control of optical bistability in one-dimensional photonic crystals with a central layer doped with Landa-type three-level atoms using atomic and laser parameters
Akbar Ashrafabadi - Siamak Khademi - Ghasem Naeimi
Primary Frequency Support in Clustered Unit Commitment with Battery Energy Storage and High Renewable Penetration
Abbas Abdollahi-Veshvaee - Turaj Amraee
Improved Generative Adversarial Network with Differentiable KS Distance
Siavash Sadeghi Ivrigh - Mohammadreza Hassannejad Bibalan - Asghar Keshtkar
Design of Fresnel-Region Millimeter-Wave Metasurface Beam Shaper Using Deep Learning
Mohammad Hossein Koohi Ghamsari - Ehsan Imanbeygi - Mehdi Ahmadi-Boroujeni
Wideband Rat-race Hybrid Coupler Using Ridge Gap Waveguide Technology
Zahra Akhoondmahdi - Ahmad Bakhtafrouz
Investigation of Li3P as Electrolyte and Lithium-ion conductor: An Ab-Initio Study
Keyvan Khosh Abady - ََamin Niksirat - Negar Karpourazar - Mahdi Pourfath
The most descriptive surprise definition for brain’s EEG response to visual and auditory oddball tasks
Mohammad Mahdi Kiani - Zahra Mousavi - Hamid Aghajan
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3