0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Recurrence Quantification and Machine Learning: A Novel Approach for Parkinson’s Disease Diagnosis from EEG Signals
نویسندگان :
Asghar Zarei
1
Alireza Talesh Jafadideh
2
1- دانشگاه صنعتی سهند
2- دانشگاه تهران
کلمات کلیدی :
Parkinson's disease (PD)،Recurrence Quantification Analysis (RQA)،Electroencephalogram (EEG)،Machine Learning (ML)
چکیده :
Parkinson's disease (PD), the second most common neurodegenerative disorder globally, primarily involves deficiency of central nervous system dopamine. Hence, diagnosis of PD presents serious challenges and is usually a prolonged process without a standardized protocol. As a result, various studies have been conducted to find reliable biomarkers for PD. One such approach is through a characterization of EEG signal features. EEG records neuronal activity from electrodes placed on the skull, and with the advent of AI, EEG signal features have been incorporated into machine learning (ML) algorithms for assistance in automatically diagnosing neurological diseases. This suggests that EEG signals can be regarded as important biomarkers that may help discriminate PD patients from controls. In this study, we explore the potential of Recurrence Quantification Analysis (RQA) features calculated from EEG signals as biomarkers for PD. Based on publicly accessible data received from The Patient Repository for EEG Data + Computational Tools (PRED + CT), we analyzed EEG recordings of PD patients who were repeatedly submitted to auditory stimulation. We employed Support Vector Machine (SVM), K-Nearest Neighborhood (KNN), and Random Forest algorithms for the classification procedure and utilized a 10-fold cross-validation method. The proposed model achieved an average accuracy of 95.72 % separating PD patients from healthy controls using the SVM classifier. This indicates that RQA features from the EEG signals could serve as promising biomarkers for PD.
لیست مقالات
لیست مقالات بایگانی شده
کاهش نویز و کلاتر در تصاویر رنگی داپلر اولترسوند
بهینا علیزاده - سید محمود سخایی
A Modified Low Rank Learning Based on Iterative Nuclear Weighting in Ripplet Transform for Denoising MR Images
Nooshin Farhangian - Mansour Nejati Jahromi - Mahdi Nouri
Dynamic Gait Analysis Using Hybrid Neural Networks: Online classification and Prediction of Locomotion Modes
Samira Dehghanian - Hamed Jalaly Bidgoly
Design of Dual-beam Orthogonal Circular Polarized Leaky-wave Holographic Antenna
Mohammad Amin Chaychizadeh - Nader Komjani
Hardware Implementation of a Chaos Based Image Encryption Using High-Level Synthesis
Saeed Sharifian.m.m - Vahid Rashtchi - Ali Azarpeyvand
تاثیر روشهای کاهش سناریو و عدم قطعیتهای چندمتغیره بر عملکرد هاب انرژی
مهسا نعمتی فر - حسین شریف زاده
A new LDO regulator with adaptive PSR improvement under wide load current range and fast load transient response
Mohammad Ahmadi - Emad Ebrahimi
Optimization of Novel L-shaped Gate All Around Junctionless Field Effect Transistor
Mohammad Tabarsi Sochelmaei - Arash Yazdanpanah Goharrizi
Source Seeking Via Circular Formation of n-Nonholonomic Agents in a 2-D Environment
Milad Ghane - Mohsen Mojiri - Mohammad Ali Ghadiri-Modarres - Elaheh Zadhoosh
طراحی مدولاتور الکتروجذبی پلاسمونیک مبتنی بر Vo2 باساختار اسلت برای بهبود عملکرد در طول موج 1550 نانومتر مخابراتی
حبیبه صمدی - حمید واحد - هادی صوفی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0