0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Recurrence Quantification and Machine Learning: A Novel Approach for Parkinson’s Disease Diagnosis from EEG Signals
نویسندگان :
Asghar Zarei
1
Alireza Talesh Jafadideh
2
1- دانشگاه صنعتی سهند
2- دانشگاه تهران
کلمات کلیدی :
Parkinson's disease (PD)،Recurrence Quantification Analysis (RQA)،Electroencephalogram (EEG)،Machine Learning (ML)
چکیده :
Parkinson's disease (PD), the second most common neurodegenerative disorder globally, primarily involves deficiency of central nervous system dopamine. Hence, diagnosis of PD presents serious challenges and is usually a prolonged process without a standardized protocol. As a result, various studies have been conducted to find reliable biomarkers for PD. One such approach is through a characterization of EEG signal features. EEG records neuronal activity from electrodes placed on the skull, and with the advent of AI, EEG signal features have been incorporated into machine learning (ML) algorithms for assistance in automatically diagnosing neurological diseases. This suggests that EEG signals can be regarded as important biomarkers that may help discriminate PD patients from controls. In this study, we explore the potential of Recurrence Quantification Analysis (RQA) features calculated from EEG signals as biomarkers for PD. Based on publicly accessible data received from The Patient Repository for EEG Data + Computational Tools (PRED + CT), we analyzed EEG recordings of PD patients who were repeatedly submitted to auditory stimulation. We employed Support Vector Machine (SVM), K-Nearest Neighborhood (KNN), and Random Forest algorithms for the classification procedure and utilized a 10-fold cross-validation method. The proposed model achieved an average accuracy of 95.72 % separating PD patients from healthy controls using the SVM classifier. This indicates that RQA features from the EEG signals could serve as promising biomarkers for PD.
لیست مقالات
لیست مقالات بایگانی شده
پیشبینی بلندمدت بار فصلی شبکه برق با استفاده از روش سری زمانی ETS
میلاد حاجی ابوالحسنی - محسن صفرزاده - زهرا عظیمی - سیدمرتضی میرباقری
A 1.2GHz wide bandwidth integer-N type-I PLL
Javad Tavakoli - Hossein Yaghobi - Samad Sheikhaei
یک روش مستقل از پارامترهای خطا بهمنظور تشخیص، دستهبندی و تعیین سکشن خطا در سیستم انتقال چند ترمیناله بر اساس تبدیل موجک گسسته
احسان اکبری - عبدالرضا شیخ الاسلامی
Design and Analysis of A Non-Isolated High gain DC-DC Converter with Single Power Switch
Amirreza Bahadori - Seyed Hossein Hosseini - Ebrahim Babaei - Saeed Danyali
Integration of P2G and Renewables in Stochastic Day-ahead Electricity-Gas Scheduling
Mojtaba Choghaei - Mohammad Kazem Sheikh-El-Eslami
Weighted Fuzzy-Based PSNR for Watermark Visual Quality Evaluation
Maedeh Jamali - Nader Karimi - Shadrokh Samavi
Low Complexity Single-Snapshot DOA Estimation Using Adaptive Filtering
Mojtaba Amiri - Mohammadreza Nargesi - Ali Olfat
A Coronavirus Herd Immunity Optimizer For Intrusion Detection System
Amir Soltany Mahboob - Hadi Shahriar Shahhoseini - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
Design of Optimal Iterative Learning Control AutoPilot for Landing Fixed-Wing Aircraft
Ali Raddanipour - Masoud Shafiee
A Framework for Plant Topology Extraction Using Process Mining and Alarm Data
Amir Neshastegaran - Ali Norouzifar - ایمان ایزدی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2