0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Recurrence Quantification and Machine Learning: A Novel Approach for Parkinson’s Disease Diagnosis from EEG Signals
نویسندگان :
Asghar Zarei
1
Alireza Talesh Jafadideh
2
1- دانشگاه صنعتی سهند
2- دانشگاه تهران
کلمات کلیدی :
Parkinson's disease (PD)،Recurrence Quantification Analysis (RQA)،Electroencephalogram (EEG)،Machine Learning (ML)
چکیده :
Parkinson's disease (PD), the second most common neurodegenerative disorder globally, primarily involves deficiency of central nervous system dopamine. Hence, diagnosis of PD presents serious challenges and is usually a prolonged process without a standardized protocol. As a result, various studies have been conducted to find reliable biomarkers for PD. One such approach is through a characterization of EEG signal features. EEG records neuronal activity from electrodes placed on the skull, and with the advent of AI, EEG signal features have been incorporated into machine learning (ML) algorithms for assistance in automatically diagnosing neurological diseases. This suggests that EEG signals can be regarded as important biomarkers that may help discriminate PD patients from controls. In this study, we explore the potential of Recurrence Quantification Analysis (RQA) features calculated from EEG signals as biomarkers for PD. Based on publicly accessible data received from The Patient Repository for EEG Data + Computational Tools (PRED + CT), we analyzed EEG recordings of PD patients who were repeatedly submitted to auditory stimulation. We employed Support Vector Machine (SVM), K-Nearest Neighborhood (KNN), and Random Forest algorithms for the classification procedure and utilized a 10-fold cross-validation method. The proposed model achieved an average accuracy of 95.72 % separating PD patients from healthy controls using the SVM classifier. This indicates that RQA features from the EEG signals could serve as promising biomarkers for PD.
لیست مقالات
لیست مقالات بایگانی شده
Scaled CR-(RC)n Digital Filter Design for Precision Pulse Processing in Spectroscopy Applications
MohammadReza Fazli - Nasser Masoumi - Hamid Rahimpour
بررسی اثر پیرشدگی بر میدان الکتریکی و جریان نشتی در مقرههای پلیمری آلوده با شبیهسازی به روش اجزای محدود
محمد گودرزی - سید محمد شهرتاش - احمد غلامی
A New Method on Failure Detection of Fixed and Moving Contacts of Circuit Breakers
Hassan Hamidi - Ali Asghar Razi Kazemi
Wake-Sleep Learning in R-STDP-Based Spiking Neural Networks to Avoid Catastrophic Forgetting
Mehrdad Baradaran - Katayoon Kobraei - Saeed Reza Kheradpisheh
A Communication-Aware Scheduler for Containers in a Kubernetes Environment Using Girvan-Newman Clustering
Marzie Norouzi Dehnashi - Mahmoud Momtazpour - Seyyed Ahmad Javadi
Lateral Stability of Electric Vehicles in Car-Following Scenario Using High-Accuracy NMPC
Mohammad Behzad Roohi - Mohammad Javad Yazdanpanah
یک روش موازی برای تخمین حالت سریع در سیستم های قدرت با ابعاد بزرگ با استفاده از تکنیک جداسازی گراف
بهنام کریم سرمدی - احمد صالحی دوبخشری
Experimental Study and Implementation of a Generalized Predictive Controller on Delta Parallel Robot Based on Actuator Identification
Hasan Jalali - Behnam Moradkhani - Hossein Damavandi - Mehdi Tale Masouleh - Ahmad Kalhor
ادغام حسگرهای رادار، لیدار و دوربین به منظور بهبود عملکرد در تشخیص اهداف برای کاربرد خودروهای خودران
سید مسعود معصومی زاده - محمد سجادی - طاها محقق - منصور نادرپور - صادق شاه سنایی - محمد علی مددی - زهرا کاوه وش - علی فتوت احمدی
Design and fabrication tip tapered fiber optic dopamine sensor based on LSPR
Roksana Esmaeilpour - Mohammad Ismail zibaii - Masoumeh Barkand - Marzieh Pajouhandeh - Soroush Rostami - Mehdi Banihashemi - Mohammad-Mahdi Babakhani-fard
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2