0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Recurrence Quantification and Machine Learning: A Novel Approach for Parkinson’s Disease Diagnosis from EEG Signals
نویسندگان :
Asghar Zarei
1
Alireza Talesh Jafadideh
2
1- دانشگاه صنعتی سهند
2- دانشگاه تهران
کلمات کلیدی :
Parkinson's disease (PD)،Recurrence Quantification Analysis (RQA)،Electroencephalogram (EEG)،Machine Learning (ML)
چکیده :
Parkinson's disease (PD), the second most common neurodegenerative disorder globally, primarily involves deficiency of central nervous system dopamine. Hence, diagnosis of PD presents serious challenges and is usually a prolonged process without a standardized protocol. As a result, various studies have been conducted to find reliable biomarkers for PD. One such approach is through a characterization of EEG signal features. EEG records neuronal activity from electrodes placed on the skull, and with the advent of AI, EEG signal features have been incorporated into machine learning (ML) algorithms for assistance in automatically diagnosing neurological diseases. This suggests that EEG signals can be regarded as important biomarkers that may help discriminate PD patients from controls. In this study, we explore the potential of Recurrence Quantification Analysis (RQA) features calculated from EEG signals as biomarkers for PD. Based on publicly accessible data received from The Patient Repository for EEG Data + Computational Tools (PRED + CT), we analyzed EEG recordings of PD patients who were repeatedly submitted to auditory stimulation. We employed Support Vector Machine (SVM), K-Nearest Neighborhood (KNN), and Random Forest algorithms for the classification procedure and utilized a 10-fold cross-validation method. The proposed model achieved an average accuracy of 95.72 % separating PD patients from healthy controls using the SVM classifier. This indicates that RQA features from the EEG signals could serve as promising biomarkers for PD.
لیست مقالات
لیست مقالات بایگانی شده
Lightweight SRAM-PUF Identity Authentication for Edge Devices
Alireza Shafiei - Mehrnaz Monajati
Unsupervised Change Detection in SAR Images Using a Six-Branch CNN and Adaptive Window Approach
Abbas Kakoolvand - Maryam Imani - Hassan Ghassemian
An Accurate Subthreshold Analytical Model for Black Phosphorus Heterojunction Dopingless Tunneling Field-Effect Transistors
Saeid Marjani - Mohamad Tolue Khayami
یک روش موازی برای تخمین حالت سریع در سیستم های قدرت با ابعاد بزرگ با استفاده از تکنیک جداسازی گراف
بهنام کریم سرمدی - احمد صالحی دوبخشری
Adaptive Attitude Synchronization and Tracking Control of Spacecraft Formation Flying using Reaction Wheel without Angular Velocity Measurement
Amin Mihankhah - Ali Doustmohammadi
Improving Artificial Neural Network Performance Using Hybrid Activation Function
Morteza Taheri - Sajad Haghzad Klidbary
Design and Simulation of a Novel High Sensitive MEMS Microphone Based On a Spring-Supported Circular Diaphragm
Mehdi Pazhooh - Ebrahim Abbaspour-Sani
Kernel-Based Band Selection for Hyperspectral Image Classification
Mehdi Kamandar
برنامه ریزی توسعه شبکه های انتقال از دیدگاه شرکت های برق منطقه ای برای حداکثر سازی درآمد حاصل از ترانزیت برق
وحید مظفری - رضا نوروزیان - امیر باقری
An Uncertain Optimal Factorization of Cooperative Manipulators for Robust Optimal Control Schemes
Neda Nasiri - Ahmad Fakharian - Mohammad Bagher Menhaj
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4