0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Recurrence Quantification and Machine Learning: A Novel Approach for Parkinson’s Disease Diagnosis from EEG Signals
نویسندگان :
Asghar Zarei
1
Alireza Talesh Jafadideh
2
1- دانشگاه صنعتی سهند
2- دانشگاه تهران
کلمات کلیدی :
Parkinson's disease (PD)،Recurrence Quantification Analysis (RQA)،Electroencephalogram (EEG)،Machine Learning (ML)
چکیده :
Parkinson's disease (PD), the second most common neurodegenerative disorder globally, primarily involves deficiency of central nervous system dopamine. Hence, diagnosis of PD presents serious challenges and is usually a prolonged process without a standardized protocol. As a result, various studies have been conducted to find reliable biomarkers for PD. One such approach is through a characterization of EEG signal features. EEG records neuronal activity from electrodes placed on the skull, and with the advent of AI, EEG signal features have been incorporated into machine learning (ML) algorithms for assistance in automatically diagnosing neurological diseases. This suggests that EEG signals can be regarded as important biomarkers that may help discriminate PD patients from controls. In this study, we explore the potential of Recurrence Quantification Analysis (RQA) features calculated from EEG signals as biomarkers for PD. Based on publicly accessible data received from The Patient Repository for EEG Data + Computational Tools (PRED + CT), we analyzed EEG recordings of PD patients who were repeatedly submitted to auditory stimulation. We employed Support Vector Machine (SVM), K-Nearest Neighborhood (KNN), and Random Forest algorithms for the classification procedure and utilized a 10-fold cross-validation method. The proposed model achieved an average accuracy of 95.72 % separating PD patients from healthy controls using the SVM classifier. This indicates that RQA features from the EEG signals could serve as promising biomarkers for PD.
لیست مقالات
لیست مقالات بایگانی شده
Design of an Optical Current Transformer for High-Voltage Gas-Insulated Switchgear-Part II: Focus on GIS Compartment Design
Reza Babaei - Asghar Akbari - Arash Moradi
Autonomous, Bio-inspired vision-based navigation system for indoor flying using hybrid optical flow and stereopsis methods
Masoud Mohtadifar - Hadi Seyedarabi
یک روش موازی برای تخمین حالت سریع در سیستم های قدرت با ابعاد بزرگ با استفاده از تکنیک جداسازی گراف
بهنام کریم سرمدی - احمد صالحی دوبخشری
امنیت سایبری در مواجه با تزریق اطلاعات نادرست به سیستم قدرت هوشمند و ارائه راهکار مقابله
مهدی جمشیدی آفارانی - مهرداد عابدی
A Framework for Plant Topology Extraction Using Process Mining and Alarm Data
Amir Neshastegaran - Ali Norouzifar - ایمان ایزدی
طراحی قانون رویداد-تحریک دینامیکی برای سیستم های سینگولار خطی به منظور کاهش تعداد بروزرسانی
سیدمحمدرضا احمدانجوی - طاهره بینازاده
Underwater Image Quality Assessment via Color and Contrast Analysis
Meysam Ghalyani - Maryam Karimi
Optimal Control of Rectangular Singular Systems
Masoud Shafiee
Multiswarm Binary Butterfly Optimization Algorithm for Solving the Multidimensional Knapsack Problem
Shakiba Shahbandegan - Madjid Naderi
Adaptive fault tolerant neural control of heterogeneous second-order multi-agent systems
Mohammad Hadi Rezaei - Ali Abooee
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4