0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
Improving the Accuracy of the Annotation Algorithm in Pattern-Based Tennis Game Video
نویسندگان :
Azam Bastanfard
1
Dariush Amirkhani
2
1- دانشگاه آزاد اسلامی واحد کرج
2- دانشگاه صداوسیما
کلمات کلیدی :
deep learning, convulsive neural networks, automatic annotation of tennis games, Support vector machine
چکیده :
Automatically annotating the game of tennis using video playback is a high potential but has many challenges. In this research, deep learning in annotating tennis games with the integration of computer vision and machine learning is discussed. The experiments of this research are performed using a set of video images and the implementation of the CNN algorithm. The proposed method was compared with NAÏVE BAYES, SVM, HMM, and S-SVM methods. The results show that well-tuned channel neural networks have the best performance among the strategies. Using deep neural network convolution in Comparisons and evaluations showed that annotation is performed with great accuracy. The accuracy obtained in this study is 0.92. CNN's proposed algorithm showed that with the necessary changes in network parameters, and this algorithm's techniques, the desired result achieved, and accuracy greatly increased.
لیست مقالات
لیست مقالات بایگانی شده
H_∞ Robust Constrained Control of Fuzzy-based Continuous-Time Nonlinear Systems
Mohsen Farbood - Mokhtar Shasadeghi - Taher Niknam - Behrouz Safarinejadian
کنترل بازوی ربات دو درجه آزادی با کنترلکننده مود لغزشی مرتبه کسری فازی-تطبیقی پایانهای
مائده نفیسی فر - متین جزءاسلامی - ابوالفضل جلیلوند - سمیرا نریمان پور - فرهاد بیات
Joint Request Aggregation and Content Caching at the Edge via Named Data Networking
Parisa Bakhtou - Siavash Khorsandi
An active learning approach for classification of several arrhythmias in ECG signal
Nastaran Darbani - Danial Katoozian - Hossein Hosseini-Nejad
یک روش تشخیص و تصحیح خطا برای بلوک های داده
سعیده صادقی - محسن راجی
Multi-agent H-Learning Based Cooperative Spectrum Sensing for Cognitive Radio Networks
Elaheh Karimpour Fard - Mahdi Nouri - Hamid Behroozi - Sima Sobhi-Givi
Energy-aware Multiple Access Using Deep Reinforcement Learning
Hamid Reza Mazandarani - Siavash Khorsandi
SchEdge: A Dynamic, Multi-agent, and Scalable Scheduling Simulator for IoT Edge
Ali Hamedi - Amirali Ghaedi - Amin Soltan-beigi - Athena Abdi
On the selection of superspreaders for advertising in science education using a new similarity measure
Sanaz Afsharian - Mohsen Heidari - Heidar Nosratzadeh - Mojgan Khalifeh
An Improved Hybrid Recommender System: Integrating Document Context-Based and Behavior-Based Methods
Meysam Varasteh - Mehdi Soleiman Nejad - Hadi Moradi - Mohammad Amin Sadeghi - Ahmad Kalhor
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3