0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
Improving the Accuracy of the Annotation Algorithm in Pattern-Based Tennis Game Video
نویسندگان :
Azam Bastanfard
1
Dariush Amirkhani
2
1- دانشگاه آزاد اسلامی واحد کرج
2- دانشگاه صداوسیما
کلمات کلیدی :
deep learning, convulsive neural networks, automatic annotation of tennis games, Support vector machine
چکیده :
Automatically annotating the game of tennis using video playback is a high potential but has many challenges. In this research, deep learning in annotating tennis games with the integration of computer vision and machine learning is discussed. The experiments of this research are performed using a set of video images and the implementation of the CNN algorithm. The proposed method was compared with NAÏVE BAYES, SVM, HMM, and S-SVM methods. The results show that well-tuned channel neural networks have the best performance among the strategies. Using deep neural network convolution in Comparisons and evaluations showed that annotation is performed with great accuracy. The accuracy obtained in this study is 0.92. CNN's proposed algorithm showed that with the necessary changes in network parameters, and this algorithm's techniques, the desired result achieved, and accuracy greatly increased.
لیست مقالات
لیست مقالات بایگانی شده
SWOT Analysis of the Mega Constellation Technology and Satellite Internet
Mohammad Bod - Parvin Sojoodi - Leila Mohammadi
بررسی تاثیر دینامیکی سیستمهای انرژی خورشیدی متصل به شبکه بر بارگذاری ترانسفورماتور و بهبود عملکرد شبکه فشار ضعیف توزیع نیروی برق
مهدی محمدی - رضا خدادی - علی معصومی
Fragmentation-aware Coordinated Virtual Optical Network Embedding Algorithm Over Elastic Optical Networks
Niusha Sabri Kadijani - Lotfollah Beygi
Classifying Human Spatial Navigation Anxiety Using Electrooculography Signals and Machine Learning Techniques
Saeed Mousavi - Sara Ashrafi - Mehdi Delrobaei
Extension Network of Radiomics-based Deeply Supervised U-Net (ERDU) For Prostate Image Segmentation
Mahdi Ashtarian - Karim Faez - Marjan Firouznia - Hamidreza Amindavar
تجزیه و تحلیل امواج فیبریلاتور دهلیزی به منظور طبقهبندی AF با استفاده از موجک لیدر
سارا میهن دوست
A Novel Model for Backcasting the Environmental Sustainability in Iran’s Electricity Supply Mix
Mohammad Saeid Atabaki - Mohammad Mohammadi
Parkinson’s Disease Classification Using Continuous Wavelet Transform and Ensemble Convolutional Neural Networks on EEG Signals
Seyed Pedram Monazami - Raheleh Davoodi
بررسی اثر فیدبک نوری بر مشخصه های دینامیکی لیزرهای قفل مد سیلیکونی
محمد شکرپور - محمد حسن یاوری
Plasmonic Refractive Index Sensor Using a Metal-Insulator-Metal Waveguide with a Disk-shaped Cavity and Silver Nanorod Defects
Mohammad Ghanavati - Mohammad-Azim Karami
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2