0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Manifold Learning-Assisted Physical Layer Key Generation for LoRaWAN: an Experimental Study
نویسندگان :
Hossein Aghajari
1
Hamed Bakhtiari babadegani,
2
Mehdi Naderi soorki
3
Sajad Ahmadinabi
4
Seyed mohsen Ahmadi
5
1- دانشگاه شهید چمران اهواز
2- دانشگاه شهید چمران اهواز
3- دانشگاه شهید چمران اهواز
4- دانشگاه شهید چمران اهواز
5- دانشگاه شهید چمران اهواز
کلمات کلیدی :
LoRa technology،Wireless link key،Physical Layer Security،Manifold learning
چکیده :
Long Range Wide Area Network (LoRaWAN) has been widely proposed as one of the main promising access networks for the battery-constrained internet of things (IoT) device. Although LoRaWAN already provides many security features such as data confidentiality and integrity between LoRa end nodes (ENs) and application servers at the core, there is a lack of schemes to manage and distribute secure wireless keys between LoRa ENs and gateways at wireless access. In this paper, an efficient physical layer security-based scheme is proposed which explores the randomness of the received signal strength index (RSSI) of LoRa wireless signals to generate link key. Due to the resource constraints LoRa nodes, manifold learning methods are applied to reduce the dimensionality of measured data of channel vectors for initial key generation. Then, a bit disagreement in the initial keys between LoRa EN and gateway are detected and corrected by means of error correction coding. Finally, to prevent information leakage in the presence of attacked node, the cryptographic hashing algorithm is utilized to generate the final key from the initial keys. To analyze the performance of the proposed manifold learning-assisted physical layer key generation in real world, several experiments for different wireless LoRa links such as line-of-sight (LoS), non-LoS, and tree-covered areas are performed over the campus of Shahid Chamran University of Ahvaz. Our analysis of the experimental measurement shows that even when the attacker node is at 50 cm distance from the LoRa EN to recover the Link key, the bit disagreement rate between legitimate EN and attacker keys is 20% in all measurement scenarios. Moreover, we also find that the local tangent space alignment method for manifold learning leads to better security performance.
لیست مقالات
لیست مقالات بایگانی شده
Integrating Model-Agnostic Meta-Learning with Advanced Language Embeddings for Few-Shot Intent Classification
Ali Rahimi - Hadi Veisi
A Low Power Wideband 0.6-5.4 GHz CG-CS LNA with pMOS-nMOS Configuration and Resistive Feedback
Sajjad Shojaei Baghini - Seyed Ali Samareh TaheriNasab - Samad Sheikhaei
تعیین آرایش بهینه خطوط جهت کاهش فرسایش یقه پایه های بتنی ناشی از تنشهای باد
میثم پوراحمدی نخلی - حمیدرضا فیروزآبادی
Performance Analysis of the Modified Flux-Coupling-Type SFCL in VSC-HVDC System
Mohammad Khakroei - Ashkan Mirzaei Rajeooni - Mahdi Rahimi Pirbasti - Hossein Heydari
Robust Consensus for Descriptor Multi-agent Systems with Uncertainties in all Matrices
Abolfazl Saadati Moghadam - Ehsan Ranjbar - Amir Abolfazl Suratgar - Hajar Atrianfar
Formation of Singular Multi-Agent Systems via a New Iterative Learning Control Approach
Ali Raddanipour - Masoud Shafiee
Efficient and Fast Analysis of SIW Microwave Devices Using the Multiple Multipole Technique
Ahmad Bakhtafrouz - Mohammad Moemenian - Mohsen Maddahali - Mohsen Karimian Kakolaki
Cascaded Multilevel Inverter with Reduced Switch Count
Mohammadamin Aalami - Ebrahim Babaei - Saeid Ghassem Zadeh
Superimposed Channel Estimation in OTFS Modulation Using Compressive Sensing
Omid Abbassi Aghda - Mohammad Javad Omidi - Hamid Saeedi-sourck
Modulation Classification with Convolutional Neural Network based Deep Learning in Elastic Optical Network
Ehsan Varasteh - Seyed Sadra Kashef - Morteza Valizadeh - Mehdi Ranjbar Zefreh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4