0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Manifold Learning-Assisted Physical Layer Key Generation for LoRaWAN: an Experimental Study
نویسندگان :
Hossein Aghajari
1
Hamed Bakhtiari babadegani,
2
Mehdi Naderi soorki
3
Sajad Ahmadinabi
4
Seyed mohsen Ahmadi
5
1- دانشگاه شهید چمران اهواز
2- دانشگاه شهید چمران اهواز
3- دانشگاه شهید چمران اهواز
4- دانشگاه شهید چمران اهواز
5- دانشگاه شهید چمران اهواز
کلمات کلیدی :
LoRa technology،Wireless link key،Physical Layer Security،Manifold learning
چکیده :
Long Range Wide Area Network (LoRaWAN) has been widely proposed as one of the main promising access networks for the battery-constrained internet of things (IoT) device. Although LoRaWAN already provides many security features such as data confidentiality and integrity between LoRa end nodes (ENs) and application servers at the core, there is a lack of schemes to manage and distribute secure wireless keys between LoRa ENs and gateways at wireless access. In this paper, an efficient physical layer security-based scheme is proposed which explores the randomness of the received signal strength index (RSSI) of LoRa wireless signals to generate link key. Due to the resource constraints LoRa nodes, manifold learning methods are applied to reduce the dimensionality of measured data of channel vectors for initial key generation. Then, a bit disagreement in the initial keys between LoRa EN and gateway are detected and corrected by means of error correction coding. Finally, to prevent information leakage in the presence of attacked node, the cryptographic hashing algorithm is utilized to generate the final key from the initial keys. To analyze the performance of the proposed manifold learning-assisted physical layer key generation in real world, several experiments for different wireless LoRa links such as line-of-sight (LoS), non-LoS, and tree-covered areas are performed over the campus of Shahid Chamran University of Ahvaz. Our analysis of the experimental measurement shows that even when the attacker node is at 50 cm distance from the LoRa EN to recover the Link key, the bit disagreement rate between legitimate EN and attacker keys is 20% in all measurement scenarios. Moreover, we also find that the local tangent space alignment method for manifold learning leads to better security performance.
لیست مقالات
لیست مقالات بایگانی شده
بکارگیری یادگیری عمیق در ارزیابی به هنگام پایداری ولتاژ کوتاه مدت با استفاده از داده های اندازه گیری فازوری
امیرحسین باباعلی - محمدتقی عاملی
Simulation and Measurement of a Large Reverberation Chamber (LRC) Loaded by Metal Elements
Mojtaba Basravi - ZakerHossein Firouzeh - Hadi Aliakbarian
Error Correction Enhancement in SCL Decoding of Polar Codes Using LSTM Network
Fatemeh Alia - Bahareh Akhbari - Mahmoud Ahmadian Attari
Study of an Improved Flux Reversal Permanent Magnet Outer-Rotor Motor
Mohammad Reza Sarshar - Mohammad Amin Jalali Kondelaji - Mojtaba Mirsalim
Robust Laguerre based model predictive control for trajectory tracking of LTV systems
Marzieh Jamalabadi - Mahyar Naraghi - Iman Sharifi - Elnaz Firouzmand
مشاهدهپذیری در فرآیندهای گراف محدود باند بدونجهت و جهتدار با استفاده از تعداد محدودی از مشاهدات
حمیدرضا خسرویان - محمود کریمی
An event-triggered distributed consensus information filter for target tracking in sensor networks
Sara Giyani - Behrouz Safarinejadian - Sajad Shamsi
A Siamese Neural Network for Predicting snoRNA-Disease Association
Milad Besharatifard - Fatemeh Zare-Mirakabad
Electricity Tariff Volatility Mitigation Using Uncertainty-Diminution and Hedge Contracts along with Risk Management Policies
Majid Moazzami - Hossein Shahinzadeh - Majid Najafi - Zohreh Azani - Shohreh Azani - Gevork B. Gharehpetian
Machine Learning Approach for Retrieval of Complex Permittivity in Cavity Resonators
Kianoosh Kazemi - Gholamreza Moradi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2