0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Manifold Learning-Assisted Physical Layer Key Generation for LoRaWAN: an Experimental Study
نویسندگان :
Hossein Aghajari
1
Hamed Bakhtiari babadegani,
2
Mehdi Naderi soorki
3
Sajad Ahmadinabi
4
Seyed mohsen Ahmadi
5
1- دانشگاه شهید چمران اهواز
2- دانشگاه شهید چمران اهواز
3- دانشگاه شهید چمران اهواز
4- دانشگاه شهید چمران اهواز
5- دانشگاه شهید چمران اهواز
کلمات کلیدی :
LoRa technology،Wireless link key،Physical Layer Security،Manifold learning
چکیده :
Long Range Wide Area Network (LoRaWAN) has been widely proposed as one of the main promising access networks for the battery-constrained internet of things (IoT) device. Although LoRaWAN already provides many security features such as data confidentiality and integrity between LoRa end nodes (ENs) and application servers at the core, there is a lack of schemes to manage and distribute secure wireless keys between LoRa ENs and gateways at wireless access. In this paper, an efficient physical layer security-based scheme is proposed which explores the randomness of the received signal strength index (RSSI) of LoRa wireless signals to generate link key. Due to the resource constraints LoRa nodes, manifold learning methods are applied to reduce the dimensionality of measured data of channel vectors for initial key generation. Then, a bit disagreement in the initial keys between LoRa EN and gateway are detected and corrected by means of error correction coding. Finally, to prevent information leakage in the presence of attacked node, the cryptographic hashing algorithm is utilized to generate the final key from the initial keys. To analyze the performance of the proposed manifold learning-assisted physical layer key generation in real world, several experiments for different wireless LoRa links such as line-of-sight (LoS), non-LoS, and tree-covered areas are performed over the campus of Shahid Chamran University of Ahvaz. Our analysis of the experimental measurement shows that even when the attacker node is at 50 cm distance from the LoRa EN to recover the Link key, the bit disagreement rate between legitimate EN and attacker keys is 20% in all measurement scenarios. Moreover, we also find that the local tangent space alignment method for manifold learning leads to better security performance.
لیست مقالات
لیست مقالات بایگانی شده
Broadband Two Layers 1-Bit Metal-Only Transmitarray with Polarization Conversion Technique
Majid Karimipour - Iman Aryanian
Type-2 fuzzy expert system for management of smart home with combining renewable resources
Ali Beheshtikhoo - Mahdi Pourgholi - Iman Khazaee
مقایسه پارامترهای عملکردی کمپرسورهای 4:2 در تکنولوژی FinFET و GAA-NWFET
پگاه زکیان - راهبه نیارکی اصلی
Conserving Power Consumption in Elastic Optical Networks using Deep Learning
Fatemeh Dehrouyeh - Sina Tavakolian - Lotfollah Beygi
Observer-Based Control for impulsive switched systems with Uncertain inputs
Soheil Sheikh ahmadi - Farzad Hashemzadeh - Mohammad Ali Badamchizadeh
Contextual Based Locality Preserving Projection for Classification of SAR Images with Multiple Polarizations
Maryam Imani
بررسی اثر نوسانات حرکتی در ارتباطات بیسیم مبتنی بر پهپاد حامل سطوح بازتابی هوشمند
معین درون پرور - نسیم محمدی - سیدمحمد رضوی زاده
A New High Step-Up Quasi Z-Source DC-DC Converter Using Buffer and Switched Capacitor Techniques
Erfan Meshkizadeh - Ebrahim Afjei - Morteza Kheradmandi
Controllable UWB THz Absorber Using a New Single-layer Graphene-based Grating
Mahdieh Bozorgi - Mahmood Rafaei Booket - Mohammad Amin Zolghadr
Wake-Sleep Learning in R-STDP-Based Spiking Neural Networks to Avoid Catastrophic Forgetting
Mehrdad Baradaran - Katayoon Kobraei - Saeed Reza Kheradpisheh
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1