0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Unveiling Enhanced Image Quality in Sparse-View CT with OSEM- ANLM Algorithm
نویسندگان :
Sayna Jamaati
1
Seyed Abolfazl Hosseini
2
Mohammad Ghorbanzadeh
3
Hossein Arabi
4
1- Sharif university of technology
2- Sharif university of technology
3- Sharif university of technology
4- Geneva University Hospital
کلمات کلیدی :
CT،sparse-view،image reconstruction،OSEM،Asymptotic Non-Local Means
چکیده :
This research presents the Ordered Subset Expectation Maximization-Asymptotic Non-local Means (OSEM-ANLM) algorithm, a novel imaging reconstruction method aimed at improving Computed Tomography (CT) image quality from sparsely sampled data. The algorithm’s performance is evaluated using a patient’s chest CT scan and a brain-skull image from the Rando phantom, with projection views reduced to 60, 45, and 30 to simulate varying data sparsity levels. Comparisons are made against conventional methods, including the Algebraic Reconstruction Technique (ART), OSEM, and OSEM-Non-Local Means(NLM). Qualitative assessments demonstrate the OSEM-ANLM’s superior ability to preserve anatomical structures while minimizing noise and artifacts, even with fewer projection views. Quantitative metrics, including Peak Signal-to-Noise Ratio (PSNR), Normalized Root Mean Square Error (NRMSE), and Structural Similarity Index (SSIM), further validate its effectiveness. For the chest CT image with 30 views (the lowest number of views with the highest level of artifacts), OSEM-ANLM achieves the highest PSNR (38.2693) and SSIM (0.9797), outperforming ART (24.6231, 0.9466), OSEM (25.1310, 0.9512), and OSEM-NLM (36.4061, 0.9669). Similarly, it yields the lowest NRMSE (0.0128), compared to ART (0.0523), OSEM (0.0484), and OSEM-NLM (0.0170). For the brain-skull image, OSEM-ANLM achieves the highest PSNR (37.6986) and SSIM (0.9898), surpassing ART (21.7716, 0.9443), OSEM (23.2124, 0.9521), and OSEM-NLM (35.9652, 0.9833). It also records the lowest NRMSE (0.0160) compared to ART (0.0599), OSEM (0.0526), and OSEM-NLM (0.0279). These results highlight the proposed method’s superior reconstruction accuracy and image fidelity under sparse sampling conditions.
لیست مقالات
لیست مقالات بایگانی شده
Holographic Principle Inspired Metal-Only Spoof Surface Plasmon Polariton Leaky-wave Antenna with Circular Polarization
Sajjad Zohrevand - Mohammad Amin Chaychi zadeh - Nader Komjani
طراحی و بررسی یک اینورتر چند سطحی جدید با کاهش تعداد ادوات قدرت به کار گرفته شده
حسین جعفری - داریوش نظرپور - سجاد گلشن نواز - ابراهیم بابائی
Decentralized Optimization in Scheduling Virtual Power Plant (VPP)
Amir Hossein Gholami - Amir Abolfazl Suratgar - Mohammad Bagher Menhaj - Mohammad Reza Hesamzadeh
Multi-Agent Systems for Quadcopter under Nonlinear Dynamics and Actuator Modeling with MPC and LQR Controller
Navid Mohammadi - Saeed Khankalantary
Application of Statistical Techniques and Machine Learning in Forecasting Distribution Network Load: A Real Case Study on the Iranian Power System
Hossein Jafari - Mohammad Sadegh Sepasian - Fatemeh Teimori
A fair-optimal solution for multi-objective optimization based on Shapley value
Mohammadreza Mohammadhasani - Habib Rajabi Mashhadi
Multi-Objective Concurrent Kernel Scheduling for Multi-GPU Systems
Negar Baradar Alizadeh - Mahmoud Momtazpour
A High Gain Transformerless DC-DC Boost Converter Using LCD Network: Design and Experimental Verification
Hamed Hokmali - Ebrahim Afjei
مدلسازی ریاضی و شبیه سازی پاندمی کووید 19در ایران
شبنم کوهستانی - نیلوفر مظفری - سید محمدرضا موسوی
Towards Non-Invasive Deep Brain Stimulation Using Temporal Interference Method
Mehdi Gholami - Farshid Ghobadzadeh - Fatemeh Yazdanshenas - Amir Yazdani - Mohammad Neshat
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2