0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Unveiling Enhanced Image Quality in Sparse-View CT with OSEM- ANLM Algorithm
نویسندگان :
Sayna Jamaati
1
Seyed Abolfazl Hosseini
2
Mohammad Ghorbanzadeh
3
Hossein Arabi
4
1- Sharif university of technology
2- Sharif university of technology
3- Sharif university of technology
4- Geneva University Hospital
کلمات کلیدی :
CT،sparse-view،image reconstruction،OSEM،Asymptotic Non-Local Means
چکیده :
This research presents the Ordered Subset Expectation Maximization-Asymptotic Non-local Means (OSEM-ANLM) algorithm, a novel imaging reconstruction method aimed at improving Computed Tomography (CT) image quality from sparsely sampled data. The algorithm’s performance is evaluated using a patient’s chest CT scan and a brain-skull image from the Rando phantom, with projection views reduced to 60, 45, and 30 to simulate varying data sparsity levels. Comparisons are made against conventional methods, including the Algebraic Reconstruction Technique (ART), OSEM, and OSEM-Non-Local Means(NLM). Qualitative assessments demonstrate the OSEM-ANLM’s superior ability to preserve anatomical structures while minimizing noise and artifacts, even with fewer projection views. Quantitative metrics, including Peak Signal-to-Noise Ratio (PSNR), Normalized Root Mean Square Error (NRMSE), and Structural Similarity Index (SSIM), further validate its effectiveness. For the chest CT image with 30 views (the lowest number of views with the highest level of artifacts), OSEM-ANLM achieves the highest PSNR (38.2693) and SSIM (0.9797), outperforming ART (24.6231, 0.9466), OSEM (25.1310, 0.9512), and OSEM-NLM (36.4061, 0.9669). Similarly, it yields the lowest NRMSE (0.0128), compared to ART (0.0523), OSEM (0.0484), and OSEM-NLM (0.0170). For the brain-skull image, OSEM-ANLM achieves the highest PSNR (37.6986) and SSIM (0.9898), surpassing ART (21.7716, 0.9443), OSEM (23.2124, 0.9521), and OSEM-NLM (35.9652, 0.9833). It also records the lowest NRMSE (0.0160) compared to ART (0.0599), OSEM (0.0526), and OSEM-NLM (0.0279). These results highlight the proposed method’s superior reconstruction accuracy and image fidelity under sparse sampling conditions.
لیست مقالات
لیست مقالات بایگانی شده
Application of Metaheurestic Optimization Algorithms for Feature Selection in Text Classification
Elham Nazari - Nafise Haghshenas - Alireza Basiri - Mohammad Reza Ahmadzadeh
Attractors Manipulation in Denoising Autoencoders for Robust Phone Recognition
Shaghayegh Reza - Seyyed Ali Seyyedsalehi - Seyyedeh Zohreh Seyyedsalehi
Reliability-Based Design of Time-Varying Electricity Tariff
Mohammad Rastegar - Nima Sarajpoor
ارزش گذاری منابع تولید پراکنده به منظور توسعه شبکه توزیع برق به کمک نظریه بازیها
شایان مرادیان - حبیب رجبی مشهدی
Robust H∞ Control Design for Variable-Speed Wind Turbines Using Bilinear Matrix Inequalities
Hamidreza Javanmardi - Alireza Hamedi - Mahya Rahimzadeh
بررسی و تحلیل تقابل تلفات و پروفیل ولتاژ به کمک الگوریتم ژنتیک چند هدفه در سیستم های قدرت در حضور سیستم های انتقال قدرت انعطاف پذیر
سجاد احمدنیا - حبیب رجبی مشهدی
طراحی کنترلکنندهی جدولبندی بهرهی پسخورد خروجی کلیدزن مقاوم برای سیستمهای پارامتر متغیر خطی نامعین چندوجهی پیوسته-زمان
رضا یاوری - سعید شمقدری - آرش صادقزاده
Vehicle stability control and trajectory tracking utilizing a type-2 fuzzy controller
Mohammad Mahdavi Mazdeh - Mehdi Pourgholi - Vahid Fakhari
تجزیه وابستگی با استفاده از Q-Learning محافظه کار
امیر زارعی - علیرضا خیاطیان - پیمان ستوده
Scattering by an array of PEC cylinders in ferrite media using spectral technique
Zahra Bahrami - Asghar Keshtkar - Ayaz Ghorbani
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1