0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Unveiling Enhanced Image Quality in Sparse-View CT with OSEM- ANLM Algorithm
نویسندگان :
Sayna Jamaati
1
Seyed Abolfazl Hosseini
2
Mohammad Ghorbanzadeh
3
Hossein Arabi
4
1- Sharif university of technology
2- Sharif university of technology
3- Sharif university of technology
4- Geneva University Hospital
کلمات کلیدی :
CT،sparse-view،image reconstruction،OSEM،Asymptotic Non-Local Means
چکیده :
This research presents the Ordered Subset Expectation Maximization-Asymptotic Non-local Means (OSEM-ANLM) algorithm, a novel imaging reconstruction method aimed at improving Computed Tomography (CT) image quality from sparsely sampled data. The algorithm’s performance is evaluated using a patient’s chest CT scan and a brain-skull image from the Rando phantom, with projection views reduced to 60, 45, and 30 to simulate varying data sparsity levels. Comparisons are made against conventional methods, including the Algebraic Reconstruction Technique (ART), OSEM, and OSEM-Non-Local Means(NLM). Qualitative assessments demonstrate the OSEM-ANLM’s superior ability to preserve anatomical structures while minimizing noise and artifacts, even with fewer projection views. Quantitative metrics, including Peak Signal-to-Noise Ratio (PSNR), Normalized Root Mean Square Error (NRMSE), and Structural Similarity Index (SSIM), further validate its effectiveness. For the chest CT image with 30 views (the lowest number of views with the highest level of artifacts), OSEM-ANLM achieves the highest PSNR (38.2693) and SSIM (0.9797), outperforming ART (24.6231, 0.9466), OSEM (25.1310, 0.9512), and OSEM-NLM (36.4061, 0.9669). Similarly, it yields the lowest NRMSE (0.0128), compared to ART (0.0523), OSEM (0.0484), and OSEM-NLM (0.0170). For the brain-skull image, OSEM-ANLM achieves the highest PSNR (37.6986) and SSIM (0.9898), surpassing ART (21.7716, 0.9443), OSEM (23.2124, 0.9521), and OSEM-NLM (35.9652, 0.9833). It also records the lowest NRMSE (0.0160) compared to ART (0.0599), OSEM (0.0526), and OSEM-NLM (0.0279). These results highlight the proposed method’s superior reconstruction accuracy and image fidelity under sparse sampling conditions.
لیست مقالات
لیست مقالات بایگانی شده
A New 1-D Model for Singular 2-D Systems
Kamyar Azarakhsh - Masoud Shafiee
A Brief Review on DC-Link Control Strategies in Microgrids
Mehran Seydi - Hassan Moradi CheshmehBeigi - Mohammad Hossein Mousavi
Human detection and following by a mobile robot using YOLO structured convolutional neural network
Yasan Majidi - Amir Hossein Hassanabadi
بهبود عملکرد یک ( LOC ) Lab – On –Chipپیشرفته مبتنی بر فناوری MEMSبه کمک تقویت میدان الکتریکی ساختار
شیوا عظیمی نام - فهیمه مروی - کیان جعفری
Optimization and Analysis of Transformer Hot Spot Temperature Under Harmonic Conditions with Different Windings
Mehran Nemati - Hamed Karimi - Alireza Siadatan - Maryam Sepehrinour
ارائه روشی مبتنی بر دایجسترای پویا جهت مسیریابی بهینه در شبکه ترافیک شهری
طه واجدسمیعی - منیره عبدوس
امکان سنجی نظری آشکارسازی گاز سولفید هیدروژن توسط سیلی گرافن (g-SiC2)
حامد مهدوی نژاد - رزا صفایی - محمدحسین شیخی
Simulation and Measurement of a Large Reverberation Chamber (LRC) Loaded by Metal Elements
Mojtaba Basravi - ZakerHossein Firouzeh - Hadi Aliakbarian
کدینگ فیبوناچی جهش یافته: ارائه یک روش برای افزایش قابلیت اطمینان در شبکههای روی تراشه سهبعدی
مجتبی فرمانی - سروین ناظر جعفری - زهرا شیرمحمدی
Study of Performance Characteristics of a Line-Start Synchronous Reluctance Motor Over its Synchronization Region
Ali Jamali-Fard - Mojtaba Mirsalim
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0