0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Unveiling Enhanced Image Quality in Sparse-View CT with OSEM- ANLM Algorithm
نویسندگان :
Sayna Jamaati
1
Seyed Abolfazl Hosseini
2
Mohammad Ghorbanzadeh
3
Hossein Arabi
4
1- Sharif university of technology
2- Sharif university of technology
3- Sharif university of technology
4- Geneva University Hospital
کلمات کلیدی :
CT،sparse-view،image reconstruction،OSEM،Asymptotic Non-Local Means
چکیده :
This research presents the Ordered Subset Expectation Maximization-Asymptotic Non-local Means (OSEM-ANLM) algorithm, a novel imaging reconstruction method aimed at improving Computed Tomography (CT) image quality from sparsely sampled data. The algorithm’s performance is evaluated using a patient’s chest CT scan and a brain-skull image from the Rando phantom, with projection views reduced to 60, 45, and 30 to simulate varying data sparsity levels. Comparisons are made against conventional methods, including the Algebraic Reconstruction Technique (ART), OSEM, and OSEM-Non-Local Means(NLM). Qualitative assessments demonstrate the OSEM-ANLM’s superior ability to preserve anatomical structures while minimizing noise and artifacts, even with fewer projection views. Quantitative metrics, including Peak Signal-to-Noise Ratio (PSNR), Normalized Root Mean Square Error (NRMSE), and Structural Similarity Index (SSIM), further validate its effectiveness. For the chest CT image with 30 views (the lowest number of views with the highest level of artifacts), OSEM-ANLM achieves the highest PSNR (38.2693) and SSIM (0.9797), outperforming ART (24.6231, 0.9466), OSEM (25.1310, 0.9512), and OSEM-NLM (36.4061, 0.9669). Similarly, it yields the lowest NRMSE (0.0128), compared to ART (0.0523), OSEM (0.0484), and OSEM-NLM (0.0170). For the brain-skull image, OSEM-ANLM achieves the highest PSNR (37.6986) and SSIM (0.9898), surpassing ART (21.7716, 0.9443), OSEM (23.2124, 0.9521), and OSEM-NLM (35.9652, 0.9833). It also records the lowest NRMSE (0.0160) compared to ART (0.0599), OSEM (0.0526), and OSEM-NLM (0.0279). These results highlight the proposed method’s superior reconstruction accuracy and image fidelity under sparse sampling conditions.
لیست مقالات
لیست مقالات بایگانی شده
تشخیص و تفکیک برخط خطای مدار باز کلید در اینورترهای تک فاز PWM
مهدی اره پناهی - علی اکبر سلیمی
Modeling and Analysis of Segmental Translator Permanent Magnet Linear Switched Reluctance Motor
Milad Golzarzadeh - Hashem Oraee - Babak Ganji
قرارگیری بهینه سطوح هوشمند قابل تنظیم مجدد برای مکان یابی فرستنده
مهدی گودرزی - فریدون بهنیا - امین آقاتبار رودباری
An incentive compatible reward sharing approach for shard-based blockchains
Mojdeh Hemati - Mehdi Shajari
A Hybrid Data-Driven Algorithm for Real-Time Friction Force Estimation in Hydraulic Cylinders
Mohamad Amin Jamshidi - Mehrbod Zarifi - Zolfa Anvari - Hamed Ghafarirad - Mohammad Zareinejad
Lane Change Decision Making Using Deep Reinforcement Learning
Pedram Lamei - Mohammad Haeri
Design and Implementation of a fast flexible and efficient multichannel digital filter for hearing aids
Mohammadsadegh Poushnegar - Mahmoud Tabandeh - Meysam Nesary Moghadam - Farzam Gilani - Ali Aghakasiri
Active and Passive Beamforming for Secure Wireless Communication via Star-RIS under imperfect CSI
Seyedeh Reyhane Shahcheragh - Kamal Mohamed-pour
بازسازی تصویر با معکوس کردن شبکه GAN
علی مجلسی کوپائی - سعید باقری شورکی - احمد شعبانی
Effective Service Restoration in Electrical Distribution Networks Using a Bi-Stage Algorithm
Qasem Asadi - Amir Amini - Hamid Falaghi - Maryam Ramezani
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0