0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Unveiling Enhanced Image Quality in Sparse-View CT with OSEM- ANLM Algorithm
نویسندگان :
Sayna Jamaati
1
Seyed Abolfazl Hosseini
2
Mohammad Ghorbanzadeh
3
Hossein Arabi
4
1- Sharif university of technology
2- Sharif university of technology
3- Sharif university of technology
4- Geneva University Hospital
کلمات کلیدی :
CT،sparse-view،image reconstruction،OSEM،Asymptotic Non-Local Means
چکیده :
This research presents the Ordered Subset Expectation Maximization-Asymptotic Non-local Means (OSEM-ANLM) algorithm, a novel imaging reconstruction method aimed at improving Computed Tomography (CT) image quality from sparsely sampled data. The algorithm’s performance is evaluated using a patient’s chest CT scan and a brain-skull image from the Rando phantom, with projection views reduced to 60, 45, and 30 to simulate varying data sparsity levels. Comparisons are made against conventional methods, including the Algebraic Reconstruction Technique (ART), OSEM, and OSEM-Non-Local Means(NLM). Qualitative assessments demonstrate the OSEM-ANLM’s superior ability to preserve anatomical structures while minimizing noise and artifacts, even with fewer projection views. Quantitative metrics, including Peak Signal-to-Noise Ratio (PSNR), Normalized Root Mean Square Error (NRMSE), and Structural Similarity Index (SSIM), further validate its effectiveness. For the chest CT image with 30 views (the lowest number of views with the highest level of artifacts), OSEM-ANLM achieves the highest PSNR (38.2693) and SSIM (0.9797), outperforming ART (24.6231, 0.9466), OSEM (25.1310, 0.9512), and OSEM-NLM (36.4061, 0.9669). Similarly, it yields the lowest NRMSE (0.0128), compared to ART (0.0523), OSEM (0.0484), and OSEM-NLM (0.0170). For the brain-skull image, OSEM-ANLM achieves the highest PSNR (37.6986) and SSIM (0.9898), surpassing ART (21.7716, 0.9443), OSEM (23.2124, 0.9521), and OSEM-NLM (35.9652, 0.9833). It also records the lowest NRMSE (0.0160) compared to ART (0.0599), OSEM (0.0526), and OSEM-NLM (0.0279). These results highlight the proposed method’s superior reconstruction accuracy and image fidelity under sparse sampling conditions.
لیست مقالات
لیست مقالات بایگانی شده
مرتب سازی اسپایک های عصبی با استخراج ویژگی مبتنی بر شبکه عمیق خود رمزگذار
شیدا معجونی - حسین حسینی نژاد محبتی - امین نیک انجام
Heart Abnormality Classification by Phonocardiogram Analysis Using Fusion in Feature and Decision Levels
Hossein Rahmati - Hassan Ghassemian - Maryam Imani
Study of Multiple Teeth Linear Switched and Hybrid Reluctance Motors
Mohammad Amin Jalali Kondelaji - Ali Ghaffarpour - Mojtaba Mirsalim
Instantaneous Blind Audio Source Separation Using Characteristic Function of Heavy-Tailed Distributions
Kamran Rajabi - Mohammadreza Hassannejad Bibalan - Neda Faraji
A 0.5-V Ultra-Low-Power Low-Pass-filter with Low Noise for ECG detection system
Yasin Heydarzadeh - Mehran Khanehbeygi - Sajad Sohrabian - Ziaddin Daie Koozehkanani
Small Target Detection Using an Enhanced Optimization Based Filter and Trajectory Tracking Via Pattern Matching Algorithm
Seyedeh Mahsa Zakipour Bahambari - Saeed Khankalantary
Enhancing the Performance of Piezoelectric Sensors Using RTV2 Elastomer Coatings
Amirreza Kamali - Amirhossein Jafari - Ehsan Maani Miandoab
Effect of Passivation on the Structural and Electronic Properties of Armchair MoSe2 Nanoribbons: A First-Principles Investigation
ََAmirreza Ghazi - Arash Yazdanpanah
Design of Fresnel-Region Millimeter-Wave Metasurface Beam Shaper Using Deep Learning
Mohammad Hossein Koohi Ghamsari - Ehsan Imanbeygi - Mehdi Ahmadi-Boroujeni
A New Low Noise 4-Gb/s Serial CMOS MPPM Modulator
Erfan Alasvand Andekah - Noushin Ghaderi - Mostafa Pour Sayahi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3