0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Unveiling Enhanced Image Quality in Sparse-View CT with OSEM- ANLM Algorithm
نویسندگان :
Sayna Jamaati
1
Seyed Abolfazl Hosseini
2
Mohammad Ghorbanzadeh
3
Hossein Arabi
4
1- Sharif university of technology
2- Sharif university of technology
3- Sharif university of technology
4- Geneva University Hospital
کلمات کلیدی :
CT،sparse-view،image reconstruction،OSEM،Asymptotic Non-Local Means
چکیده :
This research presents the Ordered Subset Expectation Maximization-Asymptotic Non-local Means (OSEM-ANLM) algorithm, a novel imaging reconstruction method aimed at improving Computed Tomography (CT) image quality from sparsely sampled data. The algorithm’s performance is evaluated using a patient’s chest CT scan and a brain-skull image from the Rando phantom, with projection views reduced to 60, 45, and 30 to simulate varying data sparsity levels. Comparisons are made against conventional methods, including the Algebraic Reconstruction Technique (ART), OSEM, and OSEM-Non-Local Means(NLM). Qualitative assessments demonstrate the OSEM-ANLM’s superior ability to preserve anatomical structures while minimizing noise and artifacts, even with fewer projection views. Quantitative metrics, including Peak Signal-to-Noise Ratio (PSNR), Normalized Root Mean Square Error (NRMSE), and Structural Similarity Index (SSIM), further validate its effectiveness. For the chest CT image with 30 views (the lowest number of views with the highest level of artifacts), OSEM-ANLM achieves the highest PSNR (38.2693) and SSIM (0.9797), outperforming ART (24.6231, 0.9466), OSEM (25.1310, 0.9512), and OSEM-NLM (36.4061, 0.9669). Similarly, it yields the lowest NRMSE (0.0128), compared to ART (0.0523), OSEM (0.0484), and OSEM-NLM (0.0170). For the brain-skull image, OSEM-ANLM achieves the highest PSNR (37.6986) and SSIM (0.9898), surpassing ART (21.7716, 0.9443), OSEM (23.2124, 0.9521), and OSEM-NLM (35.9652, 0.9833). It also records the lowest NRMSE (0.0160) compared to ART (0.0599), OSEM (0.0526), and OSEM-NLM (0.0279). These results highlight the proposed method’s superior reconstruction accuracy and image fidelity under sparse sampling conditions.
لیست مقالات
لیست مقالات بایگانی شده
Design and Analysis of a New Hybrid Three-Phase Multilevel Inverter with Improved Specifications
Hossein Jafari - Daryoush Nazarpour - Sajjad Golshannavaz - Ebrahim Babaei
بررسی توان و افزایش بازدهی در فرستنده سوئیچینگ لورن
عادل رضائیان - احمد عفیفی - جمشید ده پهلوانی
Angular Misalignment Effect on the Performance of Underwater MIMO OCC Systems
Ehsan Hamidnejad - Asghar Gholami
Artificial Intelligence-Based Prediction of Flexibility Requirements in Power Systems
MohammadReza Zarei-Jeliani - Mahmud Fotuhi-Firuzabad - Niloofar Pourghaderi
تاثیر روشهای کاهش سناریو و عدم قطعیتهای چندمتغیره بر عملکرد هاب انرژی
مهسا نعمتی فر - حسین شریف زاده
Design of a Plant Row Detection Algorithm for Agricultural Images Using Dynamic Stripping and Adaptive Parameters
Ali Pahlavan - Saeed Khankalantary
A Low-Cost Linearized Analog Resolver-To-DC Converter
Seyed Ali Samareh-TaheriNasab - Mohammad Sadegh KhajueeZadeh - Zahra Nasiri-Gheeidari - Samad Sheikhaei
طراحی و شبیه سازی یک مولد اعداد تصادفی ترکیبی ارتقا یافته در آتوماتای سلولی نقطهکوانتومی با به کارگیری ساختارهای فراپایدار
سورنا آسیابان جونقانی - نوید یثربی
Passive and Active Rectifier Combination for Hybrid Piezoelectric and Radio Frequency Energy Harvesting System
Mohammad reza Esaei - Mostafa Noohi - Ali Mirvakili
Open Circuit Fault Detection and Diagnosis for Seven-Level Hybrid Active Neutral Point Clamped (ANPC) Multilevel Inverter
Mobin Azimipanah - Mahyar Hassanifar - Yousef Neyshabouri
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4