0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Unveiling Enhanced Image Quality in Sparse-View CT with OSEM- ANLM Algorithm
نویسندگان :
Sayna Jamaati
1
Seyed Abolfazl Hosseini
2
Mohammad Ghorbanzadeh
3
Hossein Arabi
4
1- Sharif university of technology
2- Sharif university of technology
3- Sharif university of technology
4- Geneva University Hospital
کلمات کلیدی :
CT،sparse-view،image reconstruction،OSEM،Asymptotic Non-Local Means
چکیده :
This research presents the Ordered Subset Expectation Maximization-Asymptotic Non-local Means (OSEM-ANLM) algorithm, a novel imaging reconstruction method aimed at improving Computed Tomography (CT) image quality from sparsely sampled data. The algorithm’s performance is evaluated using a patient’s chest CT scan and a brain-skull image from the Rando phantom, with projection views reduced to 60, 45, and 30 to simulate varying data sparsity levels. Comparisons are made against conventional methods, including the Algebraic Reconstruction Technique (ART), OSEM, and OSEM-Non-Local Means(NLM). Qualitative assessments demonstrate the OSEM-ANLM’s superior ability to preserve anatomical structures while minimizing noise and artifacts, even with fewer projection views. Quantitative metrics, including Peak Signal-to-Noise Ratio (PSNR), Normalized Root Mean Square Error (NRMSE), and Structural Similarity Index (SSIM), further validate its effectiveness. For the chest CT image with 30 views (the lowest number of views with the highest level of artifacts), OSEM-ANLM achieves the highest PSNR (38.2693) and SSIM (0.9797), outperforming ART (24.6231, 0.9466), OSEM (25.1310, 0.9512), and OSEM-NLM (36.4061, 0.9669). Similarly, it yields the lowest NRMSE (0.0128), compared to ART (0.0523), OSEM (0.0484), and OSEM-NLM (0.0170). For the brain-skull image, OSEM-ANLM achieves the highest PSNR (37.6986) and SSIM (0.9898), surpassing ART (21.7716, 0.9443), OSEM (23.2124, 0.9521), and OSEM-NLM (35.9652, 0.9833). It also records the lowest NRMSE (0.0160) compared to ART (0.0599), OSEM (0.0526), and OSEM-NLM (0.0279). These results highlight the proposed method’s superior reconstruction accuracy and image fidelity under sparse sampling conditions.
لیست مقالات
لیست مقالات بایگانی شده
Current Re-use RF Receiver Front-End Topology Combinding LNA, Mixer, VCO and Frequency Divider
Ayda Zamani Ahari - Saeed Saeedi
A New High Step-Up Quasi Z-Source DC-DC Converter Using Buffer and Switched Capacitor Techniques
Erfan Meshkizadeh - Ebrahim Afjei - Morteza Kheradmandi
A Novel Generation Shedding Procedure for Power Management System in Industrial Power Plants
Erfan Asadi - Hamid Khoshkhoo - Ali Parizad
Deep Convolutional Neural Network for ADHD Classification using resting-state fMRI
MohammadHadi Firouzi - Maliheh Ahmadi - Kamran Kazemi - Mohammad Sadegh Helfroush - Ardalan Aarabi
Φ-OTDR Event Classification Using Machine Learning and Optical Signal Processing
Amir Babaoughli - Tohid Alizadeh - Seyed Sadra Kashef
Impact of Particle Shape on Optical and Electrical Properties of Ultrathin Silicon Solar Cells
Sayyed Reza Mirnaziry - Mohammad Ali Shameli - Leila Yousefi
Multinomial Emoji Prediction Using Deep Bidirectional Transformers and Topic Modeling
Zahra Ebrahimian - Ramin Toosi - Mohammad Ali Akhaee
High-Gain Quasi-Z-Source DC-DC Converter with Single Magnetic Core and Pole Placement Control for DC Microgrid Applications
Ali Nadermohammadi - Zahra Behboudi - Amirhossein Akhbari - Soheil Norouzi - Seyed Hossein Hosseini - Mehran Sabahi
ℒ1 Adaptive Control Design Using CMPC: Applied to Single-Link Flexible Joint Manipulator
Hossein Ahmadian - Heidar Ali Talebi - Iman Sharifi
A Novel UAV-enabled V2V Mobile Network: A Reinforcement Learning Approach
Hossein Mohammadi Firouzjaei - Javad Zeraatkar - Mehrdad Ardebilipour
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3