0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Unveiling Enhanced Image Quality in Sparse-View CT with OSEM- ANLM Algorithm
نویسندگان :
Sayna Jamaati
1
Seyed Abolfazl Hosseini
2
Mohammad Ghorbanzadeh
3
Hossein Arabi
4
1- Sharif university of technology
2- Sharif university of technology
3- Sharif university of technology
4- Geneva University Hospital
کلمات کلیدی :
CT،sparse-view،image reconstruction،OSEM،Asymptotic Non-Local Means
چکیده :
This research presents the Ordered Subset Expectation Maximization-Asymptotic Non-local Means (OSEM-ANLM) algorithm, a novel imaging reconstruction method aimed at improving Computed Tomography (CT) image quality from sparsely sampled data. The algorithm’s performance is evaluated using a patient’s chest CT scan and a brain-skull image from the Rando phantom, with projection views reduced to 60, 45, and 30 to simulate varying data sparsity levels. Comparisons are made against conventional methods, including the Algebraic Reconstruction Technique (ART), OSEM, and OSEM-Non-Local Means(NLM). Qualitative assessments demonstrate the OSEM-ANLM’s superior ability to preserve anatomical structures while minimizing noise and artifacts, even with fewer projection views. Quantitative metrics, including Peak Signal-to-Noise Ratio (PSNR), Normalized Root Mean Square Error (NRMSE), and Structural Similarity Index (SSIM), further validate its effectiveness. For the chest CT image with 30 views (the lowest number of views with the highest level of artifacts), OSEM-ANLM achieves the highest PSNR (38.2693) and SSIM (0.9797), outperforming ART (24.6231, 0.9466), OSEM (25.1310, 0.9512), and OSEM-NLM (36.4061, 0.9669). Similarly, it yields the lowest NRMSE (0.0128), compared to ART (0.0523), OSEM (0.0484), and OSEM-NLM (0.0170). For the brain-skull image, OSEM-ANLM achieves the highest PSNR (37.6986) and SSIM (0.9898), surpassing ART (21.7716, 0.9443), OSEM (23.2124, 0.9521), and OSEM-NLM (35.9652, 0.9833). It also records the lowest NRMSE (0.0160) compared to ART (0.0599), OSEM (0.0526), and OSEM-NLM (0.0279). These results highlight the proposed method’s superior reconstruction accuracy and image fidelity under sparse sampling conditions.
لیست مقالات
لیست مقالات بایگانی شده
Simulation of Two Metal- Semiconductor- Metal Photodetectors for Sensing Power and Angle of Incident Light
Shakila Karami - Maryam Khodadai - Nosrat Granpayeh
Network-based functional connectivity in MDD with suicide ideation before and after TMS: An fMRI case study
Moslem Khafi - Morteza Fattahi - Hamid Soltanian-Zadeh - Reza Rostami
Agglomerative Hierarchical Clustering Based on Q-learning for D2D Communication in Public Safety Communication Networks
Sahel Alipour - Mohammad Mansour Kesargheh - Abdulhamid Zahedi - Ghasem Mirjalily - Jamshid Abouei
بهبود تخصیص منابع لبهها در شبکه LTE مبتنی بر محاسبات لبه با رویکرد تعادل میان تاخیر و قابلیت اطمینان
ایمان عظیمی احمدآبادی - علی اکبر تدین تفت
استفاده از طیفنگاری مادون قرمز نزدیک کارکردی جهت بررسی اثر پشیمانی بر تصمیمگیری خودکنترلی
جاوید بکرانی - سید کمال الدین ستاره دان - عبدالحسین وهابی
Machine Learning Approach for Retrieval of Complex Permittivity in Cavity Resonators
Kianoosh Kazemi - Gholamreza Moradi
Automotive radar target classification using micro-Doppler features
Amin Aghatabarroodbary - Mohammad Hassan Bastani - Fereidoon Behnia
A Modified Suspended Carrier Transmitter for Medical Implants
Khashayar Dehghan - Omid Shoaei - Shahin Jafarabadi Ashtiani
Lane Change Decision Making Using Deep Reinforcement Learning
Pedram Lamei - Mohammad Haeri
Back-Stepping Integral Sliding Mode Control with Iterative Learning Control Algorithm for Quadrotor UAV Transporting Cable-Suspended Payload
Davood Allahverdy - Ahmad Fakharian - Mohammad Bagher Menhaj
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4