0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Unveiling Enhanced Image Quality in Sparse-View CT with OSEM- ANLM Algorithm
نویسندگان :
Sayna Jamaati
1
Seyed Abolfazl Hosseini
2
Mohammad Ghorbanzadeh
3
Hossein Arabi
4
1- Sharif university of technology
2- Sharif university of technology
3- Sharif university of technology
4- Geneva University Hospital
کلمات کلیدی :
CT،sparse-view،image reconstruction،OSEM،Asymptotic Non-Local Means
چکیده :
This research presents the Ordered Subset Expectation Maximization-Asymptotic Non-local Means (OSEM-ANLM) algorithm, a novel imaging reconstruction method aimed at improving Computed Tomography (CT) image quality from sparsely sampled data. The algorithm’s performance is evaluated using a patient’s chest CT scan and a brain-skull image from the Rando phantom, with projection views reduced to 60, 45, and 30 to simulate varying data sparsity levels. Comparisons are made against conventional methods, including the Algebraic Reconstruction Technique (ART), OSEM, and OSEM-Non-Local Means(NLM). Qualitative assessments demonstrate the OSEM-ANLM’s superior ability to preserve anatomical structures while minimizing noise and artifacts, even with fewer projection views. Quantitative metrics, including Peak Signal-to-Noise Ratio (PSNR), Normalized Root Mean Square Error (NRMSE), and Structural Similarity Index (SSIM), further validate its effectiveness. For the chest CT image with 30 views (the lowest number of views with the highest level of artifacts), OSEM-ANLM achieves the highest PSNR (38.2693) and SSIM (0.9797), outperforming ART (24.6231, 0.9466), OSEM (25.1310, 0.9512), and OSEM-NLM (36.4061, 0.9669). Similarly, it yields the lowest NRMSE (0.0128), compared to ART (0.0523), OSEM (0.0484), and OSEM-NLM (0.0170). For the brain-skull image, OSEM-ANLM achieves the highest PSNR (37.6986) and SSIM (0.9898), surpassing ART (21.7716, 0.9443), OSEM (23.2124, 0.9521), and OSEM-NLM (35.9652, 0.9833). It also records the lowest NRMSE (0.0160) compared to ART (0.0599), OSEM (0.0526), and OSEM-NLM (0.0279). These results highlight the proposed method’s superior reconstruction accuracy and image fidelity under sparse sampling conditions.
لیست مقالات
لیست مقالات بایگانی شده
Improving Adaptive Algorithm to Reduce Grounding System Impedance Computing Time
Soheil Rahnamayian Jelodar - Seyed Hossein Hesamedin Sadeghi - Reza Rahmani - Mohammad Ali Narooie Dehchil - Hossein Askarian Abyaneh
Efficient Full Adders for Approximate Arithmetic Units in the Image Processing Applications
Bahram Rashidi
3D Microwave Imaging inside PEMC Cavity Using Combined-Norm Regularization Term and Modified CG Algorithm
Omid Babazadeh - Hassan Nasseri
Fatigue Detection in SSVEP-Based BCIs Using Biomarkers: A Comparative Study
Maedeh Azadi Moghadam - Ali Maleki
Fast Subdomain Approximation of Brushless Electrical Machines with Spoke-Hub Permanent Magnets
Meisam Pourahmadinakhli - Seyed Hassan Daryanavard - Masoud Jokar-Kohanjani - Sina Soltani
A brief review of methods for improving the performance of virtual synchronous generators under unbalnced conditions
Mohammad Hossein Mousavi - Hassan Moradi CheshmehBeigi
ارائه ساختاری جدید از یک فوتودیود شکست بهمنی InGaAs / Si SACM APD جهت آشکار سازی در طول موج تابشی 1550 نانومتر
مهدی اسکندری - محمد عظیم کرمی
Optimal Scheduling of Active Distribution Networks with High Penetration of Plug-in Electric vehicles and Renewables Using Grasshopper Optimization Algorithm
Seyyed Hadi Mousavi - Varahram Janatifar - Arya Abdolahi - Mitra Sarhangzadeh
بررسی یک روش معکوس برای استخراج ثابت دی الکتریک محلی با استفاده از میکروسکوپ نوری روبشی میدان نزدیک
علی اقراری - محمد نشاط
A Coronavirus Herd Immunity Optimizer For Intrusion Detection System
Amir Soltany Mahboob - Hadi Shahriar Shahhoseini - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0