0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Transfer learning using deep convolutional neural network for predicting dementia severity
نویسندگان :
Vahid Asayesh
1
Mehdi Dehghani
2
Majid Torabi Nikjeh
3
Sepideh Akhtari khosrowshahi
4
1- دانشگاه تبریز
2- دانشگاه تبریز
3- دانشگاه شیراز
4- دانشگاه تبریز
کلمات کلیدی :
dementia،electroencephalography،continues Wavelet transform،convolutional neural network،support vector machine
چکیده :
Dementia is a clinical syndrome that includes a group of disorders related to cognitive decline and influence brain functions. Electroencephalography (EEG) is a neurodynamic biomarker that helps in detecting cortical abnormalities and shows good performance in the diagnosis of dementia. Accurate and early diagnosis is important to control dementia progression, for this reason, automatic diagnosis techniques such as using machine learning algorithms have become important in this field. This paper introduces an automatic methodology based on transfer learning with deep convolutional neural networks (CNNs) for the diagnosis severity of dementia. First, EEG signals are converted into time-frequency image using continuous wavelet transform (CWT). Then, the images are applied to the pre-trained CNN. The output of convolutional and pooling layers of this model is used as deep features and are fed into the support vector machine (SVM) classifier. The experiments showed that the F8, Pz, and P4 channels applied to the AlexNet-SVM achieved best results with accuracy of 83.8%, 82.3% and 82.4%, respectively. Also, combination of electrodes in parietal region achieved best results with accuracy of 81.9%.
لیست مقالات
لیست مقالات بایگانی شده
The Effect of Cavity Length on Two-State Quantum Dot Laser Performance
Gholamreza Babaabasi - Mohammad Mohsen Sheikhey - Sara Alaei
طبقهبندی تصاویر سلولی پاپ اسمیر مبتنی بر الگوریتمهای ترتیبی یادگیری جمعی و شبکههای عمیق استخراج ویژگی
زهرا کمالی - محمدصادق هل فروش - کامران کاظمی - مژگان اکبرزاده
Speech Emotion Recognition Using Transfer Learning and Self-Supervised Speech Representation Learning
Marziye Azad - Babak Nasersharif
A Low-Power Cyclic Vernier Time-to-Digital Converter for In Pixel Applications
Mohammad Hasan Pass - Sayed Masoud Sayedi - Seyed Amir Reza Ahmadi Mehr
Uneven Illumination Correction in Whole Slide Imaging using Pix2Pix
Sama Nemati - Hasti Shabani
Contextual Based Locality Preserving Projection for Classification of SAR Images with Multiple Polarizations
Maryam Imani
Fatigue Detection in SSVEP-Based BCIs Using Biomarkers: A Comparative Study
Maedeh Azadi Moghadam - Ali Maleki
A Single-Switch Single-Inductor High Step-Up DC-DC Converter with Single-Input and Dual-Output Ports
Ali Nadermohammadi - Saed Mahmoud Alilou - Mohammad Maalandish - Seyed Hossein Hosseini - Mehdi Abapour - Kazrm Zare
Analysis of the DC Bias Effects on the Transformer Vibration Using a Multi-field Coupling Model
Amir Esmaeili Nezhad - Mohammad Hamed Samimi
A Non-Isolated Common Ground Dual-Input DC-DC Converter with a High Voltage Gain for Photovoltaic Power Generation Systems
Hamed Abdi - Naghi Rostami - Ebrahim Babaei
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0