0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Contrastive Learning Framework for fMRI Time-Series Classification in Left and Right Epilepsy Using Continues Wavelet Transform
نویسندگان :
Marzieh Soheili-nejad
1
Saeed Masoudnia
2
Hamid Soltanian-zadeh
3
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
کلمات کلیدی :
rest-fMRI،Self-supervised learning،contrastive learning،CutMix،Continuous Wavelet Transform،SMOTE
چکیده :
Advancements in deep learning have shown substantial promise for medical image analysis, offering potential improvements in healthcare and patient outcomes. However, deep learning models often require large labeled datasets, which are challenging and costly to curate, particularly in the case of fMRI data. Resting-state fMRI (rest-fMRI) presents a unique classification challenge due to its high-dimensional, low sample size nature, making it difficult for traditional deep neural network to achieve reliable accuracy. Self Supervised Learning (SSL), particularly contrastive learning, has emerged as a viable solution to address these limitations. It enables the models to learn meaningful representations unlabeled rest-fMRI data. This study leverages the Continuous Wavelet Transform (CWT) for feature extraction, followed by contrastive learning with CutMix augmentation to capture rich representations from the rest-fMRI time-series data. To address the inherent class imbalance, we apply Synthetic Minority Over-sampling Technique (SMOTE) for data augmentation before final classification. By integrating robust feature extraction, contrastive learning, and targeted data augmentation, our method effectively addresses the challenges posed by high-dimensional data and limited sample sizes. Experimental results demonstrate that our proposed approach achieves high classification accuracy for distinguishing between left versus right epilepsy cases, even with limited and noisy data, while effectively minimizing overfitting.
لیست مقالات
لیست مقالات بایگانی شده
مقایسهگر پویا با قابلیت کار در شرایط زیر آستانه بر اساس منطق Pseudo-NMOS
سید سعید حسینی دولت آبادی - محسن جلالی
Enhanced the Droop Approach MMC-Based in AC Microgrids
Amirhossein Fallah Bagheri - Hamid Reza Baghaee - Ali Yazdian Varjani - Kourosh Khalaj Monfared - Reza Alizadeh
Detecting Variance Changes in Alarm Systems Using Generalized Delay-timers
Zahra Sharifi - Iman Izadi - Jafar Ghaisari
Compact Multiband HMSIW Antenna Loaded with Complementary Split Ring Resonators
Rasol Zayer - Mohamamd Naghi Azarmanesh - Javad Nourinia - Changiz Ghobadi - Farzad Alizadeh - Bahman Mohammadi
A Simple Method for Continuous Beam-Steering in SIW based Leaky Wave Antenna
Sina Rezaeeahvanouee - AmirHossein Sadough
Employing Integrated Quantum Photonic Computers for Gaussian Boson Sampling
Mehrdad Ghasemi - Hassan Kaatuzian - Houshyar Noshad - Mahmood Hassani - Mobin Motaharifar - Mahdi NoroozOliaei
A compact 5G MIMO antenna with reduced mutual coupling
Marziyeh Amiri - Ali Ghafoorzadeh-yazdi - Abbas-Ali Heidari
Temperature-Sensitive Tunable Nanoantenna Based on Phase Change Material (Ge2Sb2Te5) Substrate
Daniyal Khosh Maram - Seyed Asad Amirhosseini
Low-Leakage 6T SRAM Cell for In-Memory Computing with High Stability
Deniz Najafi - Behzad Ebrahimi
Machine Learning-based Fundamental Stock Prediction Using Companies’ Financial Reports
Hossein Rezaei - Kamran Abdi - Mohsen Hooshmand
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3