0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Contrastive Learning Framework for fMRI Time-Series Classification in Left and Right Epilepsy Using Continues Wavelet Transform
نویسندگان :
Marzieh Soheili-nejad
1
Saeed Masoudnia
2
Hamid Soltanian-zadeh
3
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
کلمات کلیدی :
rest-fMRI،Self-supervised learning،contrastive learning،CutMix،Continuous Wavelet Transform،SMOTE
چکیده :
Advancements in deep learning have shown substantial promise for medical image analysis, offering potential improvements in healthcare and patient outcomes. However, deep learning models often require large labeled datasets, which are challenging and costly to curate, particularly in the case of fMRI data. Resting-state fMRI (rest-fMRI) presents a unique classification challenge due to its high-dimensional, low sample size nature, making it difficult for traditional deep neural network to achieve reliable accuracy. Self Supervised Learning (SSL), particularly contrastive learning, has emerged as a viable solution to address these limitations. It enables the models to learn meaningful representations unlabeled rest-fMRI data. This study leverages the Continuous Wavelet Transform (CWT) for feature extraction, followed by contrastive learning with CutMix augmentation to capture rich representations from the rest-fMRI time-series data. To address the inherent class imbalance, we apply Synthetic Minority Over-sampling Technique (SMOTE) for data augmentation before final classification. By integrating robust feature extraction, contrastive learning, and targeted data augmentation, our method effectively addresses the challenges posed by high-dimensional data and limited sample sizes. Experimental results demonstrate that our proposed approach achieves high classification accuracy for distinguishing between left versus right epilepsy cases, even with limited and noisy data, while effectively minimizing overfitting.
لیست مقالات
لیست مقالات بایگانی شده
Non-Invasive Blood Pressure Estimation using Poincaré Plot Indices of Photoplethysmography Signals
Fatemeh Shoeibi - Esmaeil Najafiaghdam - Afshin Ebrahimi
تجزیه و تحلیل عملکرد سیستم ناوبری اینرسیایی با استفاده از الگوریتم GAME
نرجس احمدیان - بیژن ذاکری گتابی
برنامه ریزی توسعه شبکه های انتقال از دیدگاه شرکت های برق منطقه ای برای حداکثر سازی درآمد حاصل از ترانزیت برق
وحید مظفری - رضا نوروزیان - امیر باقری
Temperature-Sensitive Tunable Nanoantenna Based on Phase Change Material (Ge2Sb2Te5) Substrate
Daniyal Khosh Maram - Seyed Asad Amirhosseini
Improving CycleGAN-VC2 Voice Conversion by Learning MCD-Based Evaluation and Optimization
Majid Behdad - Davood Gharavian
طراحی و مدلسازی امولاتور دریچه گاز الکترونیکی برای کاربرد در خودرو
محمدرضا درزی - مجید شالچیان
Application of Statistical Techniques and Machine Learning in Forecasting Distribution Network Load: A Real Case Study on the Iranian Power System
Hossein Jafari - Mohammad Sadegh Sepasian - Fatemeh Teimori
Study of Multiple Teeth Linear Switched and Hybrid Reluctance Motors
Mohammad Amin Jalali Kondelaji - Ali Ghaffarpour - Mojtaba Mirsalim
Contextual and Spectral Feature Fusion Using Local Binary Graph for Hyperspectral Images Classification
Zahra Farmahini Farahani - Hassan Ghassemian - Maryam Imani
Effect of structural connectivity weightings in graph-based analysis in Schizophrenia
Sara Khamseh - Farzaneh Keyvanfard
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1