0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Contrastive Learning Framework for fMRI Time-Series Classification in Left and Right Epilepsy Using Continues Wavelet Transform
نویسندگان :
Marzieh Soheili-nejad
1
Saeed Masoudnia
2
Hamid Soltanian-zadeh
3
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
کلمات کلیدی :
rest-fMRI،Self-supervised learning،contrastive learning،CutMix،Continuous Wavelet Transform،SMOTE
چکیده :
Advancements in deep learning have shown substantial promise for medical image analysis, offering potential improvements in healthcare and patient outcomes. However, deep learning models often require large labeled datasets, which are challenging and costly to curate, particularly in the case of fMRI data. Resting-state fMRI (rest-fMRI) presents a unique classification challenge due to its high-dimensional, low sample size nature, making it difficult for traditional deep neural network to achieve reliable accuracy. Self Supervised Learning (SSL), particularly contrastive learning, has emerged as a viable solution to address these limitations. It enables the models to learn meaningful representations unlabeled rest-fMRI data. This study leverages the Continuous Wavelet Transform (CWT) for feature extraction, followed by contrastive learning with CutMix augmentation to capture rich representations from the rest-fMRI time-series data. To address the inherent class imbalance, we apply Synthetic Minority Over-sampling Technique (SMOTE) for data augmentation before final classification. By integrating robust feature extraction, contrastive learning, and targeted data augmentation, our method effectively addresses the challenges posed by high-dimensional data and limited sample sizes. Experimental results demonstrate that our proposed approach achieves high classification accuracy for distinguishing between left versus right epilepsy cases, even with limited and noisy data, while effectively minimizing overfitting.
لیست مقالات
لیست مقالات بایگانی شده
بررسی توان و افزایش بازدهی در فرستنده سوئیچینگ لورن
عادل رضائیان - احمد عفیفی - جمشید ده پهلوانی
Multi-Agent Deployment Around a Source in the Plane Using Biased Extremum Seeking
Mohammadali Ghadiri-modarres - Mohsen Mojiri - Ehsan Fattahi
Exploring the Impact of Machine Translation on Fake News Detection: A Case Study on Persian Tweets about COVID-19
Masood Hamed Saghayan - Seyedeh Fatemeh Ebrahimi - Mohammad Bahrani
A Mathematical 3D Solution to Efficiently Locate Drones in 5G Wireless Networks
Mina Taghavi - Jamshid Abouei
Design and simulation of a surface acoustic wave based micro pressure sensor
Sohrab Ghasemi Bisheh - Mohammad Tahmasebipour - Fatemeh Anousheh
کنترل حرارت مبتنی بر روش LQG در پیل سوختی غشاء پلیمری
احمدرضا ولی - محمدعلی علیرضاپوری - محمدمهدی برزگری
Efficiency Estimation Methods of In-Service Induction Motors-A Review
Moslem Geravandi - Hassan Moradi CheshmehBeigi
A Non-Isolated Common Ground Dual-Input DC-DC Converter with a High Voltage Gain for Photovoltaic Power Generation Systems
Hamed Abdi - Naghi Rostami - Ebrahim Babaei
Analysis of the DC Bias Effects on the Transformer Vibration Using a Multi-field Coupling Model
Amir Esmaeili Nezhad - Mohammad Hamed Samimi
Temperature-Sensitive Tunable Nanoantenna Based on Phase Change Material (Ge2Sb2Te5) Substrate
Daniyal Khosh Maram - Seyed Asad Amirhosseini
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4