0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Contrastive Learning Framework for fMRI Time-Series Classification in Left and Right Epilepsy Using Continues Wavelet Transform
نویسندگان :
Marzieh Soheili-nejad
1
Saeed Masoudnia
2
Hamid Soltanian-zadeh
3
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
کلمات کلیدی :
rest-fMRI،Self-supervised learning،contrastive learning،CutMix،Continuous Wavelet Transform،SMOTE
چکیده :
Advancements in deep learning have shown substantial promise for medical image analysis, offering potential improvements in healthcare and patient outcomes. However, deep learning models often require large labeled datasets, which are challenging and costly to curate, particularly in the case of fMRI data. Resting-state fMRI (rest-fMRI) presents a unique classification challenge due to its high-dimensional, low sample size nature, making it difficult for traditional deep neural network to achieve reliable accuracy. Self Supervised Learning (SSL), particularly contrastive learning, has emerged as a viable solution to address these limitations. It enables the models to learn meaningful representations unlabeled rest-fMRI data. This study leverages the Continuous Wavelet Transform (CWT) for feature extraction, followed by contrastive learning with CutMix augmentation to capture rich representations from the rest-fMRI time-series data. To address the inherent class imbalance, we apply Synthetic Minority Over-sampling Technique (SMOTE) for data augmentation before final classification. By integrating robust feature extraction, contrastive learning, and targeted data augmentation, our method effectively addresses the challenges posed by high-dimensional data and limited sample sizes. Experimental results demonstrate that our proposed approach achieves high classification accuracy for distinguishing between left versus right epilepsy cases, even with limited and noisy data, while effectively minimizing overfitting.
لیست مقالات
لیست مقالات بایگانی شده
تفکیک منبع تخلیه جزئی شدید در کابل های قدرت به کمک روش یادگیری عمیق
سید محسن علی پور - کیان شاهین فر - سید محمد شهرتاش
بهبود تخمین واریانس نویز با بهره گیری از واریانس تغییرات سیگنال
مجید دهقانیزاده - مسعودرضا آقابزرگی
ℒ1 Adaptive Control Design Using CMPC: Applied to Single-Link Flexible Joint Manipulator
Hossein Ahmadian - Heidar Ali Talebi - Iman Sharifi
Denoising of the Diffusion Tensor Imaging Data Using k-Space Redundancy
Khashayar Esmaeilzadeh - Farzaneh Keyvanfard - Abbas Nasiraei Moghaddam
Study of the interaction between different parameters in the fabrication of paper-based microfluidic devices using the wax printing method
MOHAMMAD DERAKHSHANI - SEYED HOSSEIN TAYEBI - MEHRDAD LOTFI CHOOBBARI - AMIR JAHANSHAHI
Design and Manufacturing of a Programmable Spin Coater Based on a Brushless DC Motor
MirBehrad Mousavi - Saeed Javadizadeh - Seyed Ahmadreza Firoozabadi - Majid Badieirostami
Outage and Sum-Rate Analysis for mCAP-NOMA in Visible Light Communication Under Users' Mobility
Amir Oshtoudan - Seyed Mohammad Sajad Sadough
Digitizing Analog ECGs: A Deep Learning Pipeline for Converting Historical Records into High-Quality Digital Signals
Sahar Askari - Somayeh Afrasiabi
Investigation of Cross-coupling Effects on Grid-connected Inverters with LCL Filter Based on RGA Analysis
Ali Rezaei - Mohsen Hamzeh - Nima Mahdian Dehkordi
Three-Winding Coupled-Inductor-based Boost Converter with Voltage Multiplier Cell and Active Clamp Circuit for Low-Power Photovoltaic Application
Danesh Amani - Ali Valizadeh - Reza Beiranvand - Ali Yazdian Varjani
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2