0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Contrastive Learning Framework for fMRI Time-Series Classification in Left and Right Epilepsy Using Continues Wavelet Transform
نویسندگان :
Marzieh Soheili-nejad
1
Saeed Masoudnia
2
Hamid Soltanian-zadeh
3
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
کلمات کلیدی :
rest-fMRI،Self-supervised learning،contrastive learning،CutMix،Continuous Wavelet Transform،SMOTE
چکیده :
Advancements in deep learning have shown substantial promise for medical image analysis, offering potential improvements in healthcare and patient outcomes. However, deep learning models often require large labeled datasets, which are challenging and costly to curate, particularly in the case of fMRI data. Resting-state fMRI (rest-fMRI) presents a unique classification challenge due to its high-dimensional, low sample size nature, making it difficult for traditional deep neural network to achieve reliable accuracy. Self Supervised Learning (SSL), particularly contrastive learning, has emerged as a viable solution to address these limitations. It enables the models to learn meaningful representations unlabeled rest-fMRI data. This study leverages the Continuous Wavelet Transform (CWT) for feature extraction, followed by contrastive learning with CutMix augmentation to capture rich representations from the rest-fMRI time-series data. To address the inherent class imbalance, we apply Synthetic Minority Over-sampling Technique (SMOTE) for data augmentation before final classification. By integrating robust feature extraction, contrastive learning, and targeted data augmentation, our method effectively addresses the challenges posed by high-dimensional data and limited sample sizes. Experimental results demonstrate that our proposed approach achieves high classification accuracy for distinguishing between left versus right epilepsy cases, even with limited and noisy data, while effectively minimizing overfitting.
لیست مقالات
لیست مقالات بایگانی شده
A Geometry-based Approach to Reduce the Quantization lobe in 1-bit Reconfigurable Intelligent Surfaces
Nima Ahmadi - Forouhar Farzaneh
آشکارسازی گاز فسژن با استفاده از بروفن تک لایه 12 β: شبیه سازی با استفاده از نظریه تابعی چگالی
صادق رنجبر - رزا صفایی - محمدحسین شیخی
A novel wideband low profile Fabry-Perot cavity antenna using single-layer partially reflective surface
Mahtab Ghanbari - Bijan Abbasi arand - Maryam Hesari shermeh
A High Linearity Wideband Low-Noise Amplifier Using Capacitor Cross-Coupled Common-Gate Structure
Abolfazl Rajaiyan - Fahimeh Rahimi - Mehdi Saberi
Leader-Following H_∞ Fault-Tolerant Consensus of Nonlinear Multi-agent Systems with External Disturbances
Maryam Salimifard - Heidar Ali Talebi
Employing Integrated Quantum Photonic Computers for Gaussian Boson Sampling
Mehrdad Ghasemi - Hassan Kaatuzian - Houshyar Noshad - Mahmood Hassani - Mobin Motaharifar - Mahdi NoroozOliaei
استفاده از زیرلایه متناوب و عناصر پروانه ای شکل برای ساخت آنتن آرایه بازتابی پهن باند
مرضیه عسگری - مهدیه بزرگی - محمود رفائی بوکت
Temperature Prediction of Lithium-Ion Batteries for Thermal Management Systems Using Graph Convolutional Networks
Sepehr Ghalebi - Elaheh Sadat Ahmadi Mousavi - Farzaneh Abdollahi - Farschad Torabi
Development of Reflectarray Antennas With a Deflected Beam: An Approach Based on Artificial Neural Networks
Mahdieh Esmaeiliporzani - Zahra Atlasbaf
Numerical and Computational Study on Compressive Strain Effect in Perovskite Solar Cell
Daniyal Khosh Maram - Hamed Abnavi - Hanieh Talati Aghdam
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4