0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Deep Learning based Electrical Load Forecasting using Temporal Fusion Transformer and Trend-Seasonal Decomposition
نویسندگان :
Ehsan Saadipour-Hanzaie
1
Mohammad-Amin Pourmoosavi
2
Turaj Amraee
3
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Deep Learning،Deep Neural Networks،Load Forecasting،Temporal Fusion Transformer،Time-series Decomposition
چکیده :
Secure and consistent electrical power supply is promised by smart grids. Moreover, high-tech monitoring and metering instruments provoked smart grids into more self-controlled and automated systems. Therefore, load forecasting with high accuracy is fundamentally required at the individual and aggregated level of the power system for planning and operation studies. Deep neural networks have proved their capability of time-series forecasting in different fields. As well, Transformer architecture was a revolution in deep neural networks with outstanding performance in different fields. So far, Temporal Fusion Transformer (TFT) is one of the leading neural networks based on the Transformer concept. The TFT model is designed particularly for stochastic time-series forecasting, which reveals high-accuracy forecasting results. In this paper, TFT is employed as the backbone neural network architecture for electrical load forecasting. Furthermore, a trend-seasonal decomposition method is utilized based on the moving-average concept to break down the original time series into the trend and seasonal components. Trend-seasonal decomposition can provide a bright view of time series over time. The proposed model is tested on Iran's historical load data to validate the performance of mid-term load forecasting. However, the proposed method is robust for any time horizon. Results demonstrate notable improvements in the forecasting accuracy of the proposed model compared to the original TFT.
لیست مقالات
لیست مقالات بایگانی شده
بررسی عملکرد تقویت کننده فیبری پالسی نانوثانیه اربیوم ایتربیوم با نرخ تکرار پایین
احسان حمیدنژاد - اصغر غلامی - محمدجواد حکمت
تشخیص و مقیاس بندی شدت افسردگی براساس روشهای یادگیری ماشین و با استفاده از معیارهای خطی، غیرخطی و آماری محاسبه شده در سیگنالهای الکتروانسفالگرام
پریسا رئوف امامزاده هاشمی - وحید شالچیان - رضا رستمی
Analysis the Effect of Partial Transmission Element on the Performance of Fano Laser
Mohammad Heydari - Mohammadhasan Yavari - Aref Rasoulzadeh Zali
Stability Analysis for the Non-linear Model Predictive Control of a Flexible Joint Manipulator with Dynamics Uncertainties
Mohamadreza Satvati - Hossein Karimpour - Keivan Torabi - Mohammad Motaharifar
A boosting based approach to handle imbalanced data
Sahar Hassanzadeh Mostafaei - Jafar Tanha - Negin Samadi - Soodabeh Imanzadeh - Nazila Razzaghi-Asl
Surface roughness classification in dynamic touch using EEG signals
Ali Amini - Karim Faez - Mahmood Amiri
طراحی خودرمزگذار متغیر جهت تشخیص عیب در بیرینگهای غلتشی
مریم آهنگ - مهدی علیاری شورهدلی
Multi-Agent Deployment Around a Source in the Plane Using Biased Extremum Seeking
Mohammadali Ghadiri-modarres - Mohsen Mojiri - Ehsan Fattahi
Real-Time Prediction of Lower Limb AngularTrajectories Using an Optimized LSTM Model withMarkerless Motion Capture
Amirhossein Jafari - Hamed Jalaly Bidgoly
کنترل تشنج در مدل صرع ساز با استفاده از کنترل کننده سطح دینامیکی
مهدی کمالی دولت آبادی - مرضیه کمالی - فرزانه شایق
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0