0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Deep Learning based Electrical Load Forecasting using Temporal Fusion Transformer and Trend-Seasonal Decomposition
نویسندگان :
Ehsan Saadipour-Hanzaie
1
Mohammad-Amin Pourmoosavi
2
Turaj Amraee
3
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Deep Learning،Deep Neural Networks،Load Forecasting،Temporal Fusion Transformer،Time-series Decomposition
چکیده :
Secure and consistent electrical power supply is promised by smart grids. Moreover, high-tech monitoring and metering instruments provoked smart grids into more self-controlled and automated systems. Therefore, load forecasting with high accuracy is fundamentally required at the individual and aggregated level of the power system for planning and operation studies. Deep neural networks have proved their capability of time-series forecasting in different fields. As well, Transformer architecture was a revolution in deep neural networks with outstanding performance in different fields. So far, Temporal Fusion Transformer (TFT) is one of the leading neural networks based on the Transformer concept. The TFT model is designed particularly for stochastic time-series forecasting, which reveals high-accuracy forecasting results. In this paper, TFT is employed as the backbone neural network architecture for electrical load forecasting. Furthermore, a trend-seasonal decomposition method is utilized based on the moving-average concept to break down the original time series into the trend and seasonal components. Trend-seasonal decomposition can provide a bright view of time series over time. The proposed model is tested on Iran's historical load data to validate the performance of mid-term load forecasting. However, the proposed method is robust for any time horizon. Results demonstrate notable improvements in the forecasting accuracy of the proposed model compared to the original TFT.
لیست مقالات
لیست مقالات بایگانی شده
شناسایی کمپلکس های پروتئینی با رویکرد خوشه بندی EM و با استفاده از داده های زیستی
مریم مولی وردیخانی - سعید جلیلی
برنامه ریزی مسیر حرکت ربات در بین عابران پیاده با پیشبینی حرکت عابران
ملیکا رضوانی - سمانه حسینی
Small Target Detection Using an Enhanced Optimization Based Filter and Trajectory Tracking Via Pattern Matching Algorithm
Seyedeh Mahsa Zakipour Bahambari - Saeed Khankalantary
A New High Voltage Gain Full Bridge Resonant Switched-Capacitor Converter
Sajad AfsharZarandi - Reza Beiranvand
Power exchanging of a VPP with its neighboring VPPs and participating in Day-ahead and spinning reserve markets
Mohammad Fazel Dehghanniri - Masoud Ali Akbar Golkar - Farzin Ghasemi
مکان یابی بهینه ذخیره سازهای متحرک انرژی الکتریکی با هدف بهبود تاب آوری سیستم توزیع قبل از طوفان
سبحان آقابابایی - محمد صادق سپاسیان
مدل سازی سینگولار گسسته زمان یک سیستم الکتریکی و کنترل آن به روش الگوریتم یادگیری تکرارشونده
علی غلامی بنادکوکی - طاهره بینازاده
Real-Time Stress Detection via Photoplethysmogram Signals: Implementation of a Combined Continuous Wavelet Transform and Convolutional Neural Network on Resource-Constrained Microcontrollers
Yasin Hasanpoor - Amin Rostami - Bahram Tarvirdizadeh - Khalil Alipour - Mohammad Ghamari
Modeling and Analysis of Segmental Translator Permanent Magnet Linear Switched Reluctance Motor
Milad Golzarzadeh - Hashem Oraee - Babak Ganji
A Practical ACO-OFDM Link with an Efficient Timing Recovery Pattern
Maryam Sadeghi - Masoud Johar - Mahdi Shabany
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2