0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Deep Learning based Electrical Load Forecasting using Temporal Fusion Transformer and Trend-Seasonal Decomposition
نویسندگان :
Ehsan Saadipour-Hanzaie
1
Mohammad-Amin Pourmoosavi
2
Turaj Amraee
3
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Deep Learning،Deep Neural Networks،Load Forecasting،Temporal Fusion Transformer،Time-series Decomposition
چکیده :
Secure and consistent electrical power supply is promised by smart grids. Moreover, high-tech monitoring and metering instruments provoked smart grids into more self-controlled and automated systems. Therefore, load forecasting with high accuracy is fundamentally required at the individual and aggregated level of the power system for planning and operation studies. Deep neural networks have proved their capability of time-series forecasting in different fields. As well, Transformer architecture was a revolution in deep neural networks with outstanding performance in different fields. So far, Temporal Fusion Transformer (TFT) is one of the leading neural networks based on the Transformer concept. The TFT model is designed particularly for stochastic time-series forecasting, which reveals high-accuracy forecasting results. In this paper, TFT is employed as the backbone neural network architecture for electrical load forecasting. Furthermore, a trend-seasonal decomposition method is utilized based on the moving-average concept to break down the original time series into the trend and seasonal components. Trend-seasonal decomposition can provide a bright view of time series over time. The proposed model is tested on Iran's historical load data to validate the performance of mid-term load forecasting. However, the proposed method is robust for any time horizon. Results demonstrate notable improvements in the forecasting accuracy of the proposed model compared to the original TFT.
لیست مقالات
لیست مقالات بایگانی شده
Manifold Learning-Assisted Physical Layer Key Generation for LoRaWAN: an Experimental Study
Hossein Aghajari - Hamed Bakhtiari babadegani, - Mehdi Naderi soorki - Sajad Ahmadinabi - Seyed mohsen Ahmadi
A Barrier Function Based Feedback Linearization Method for On-line Output Tracking Control of Non-minimum Phase Systems
Fatemeh Jahangiri - Ali Talebi - Mohammad Bagher Menhaj
LSTM and Markov-Based Mobility Prediction for Multi-access Edge Computing
Hadi Ghavaminejad - Nasser Yazdani - Golboo Rashidi
بررسی عملکرد الگوریتم یادگیری تقلیدی در آموزش شبکه عصبی کاملا متصل برای حل مسئله مسیریابی در محیطهای چندعامله
محمد روغنی - سمانه حسینی سمنانی
A New Data Delivery Approach for Blockchain based on NDN
Shah Jahan Sirat - Sadegh Dorri Nogoorani - Behzad Akbari
Design Of Observer-Based Nonlinear Controller For Tracking Maximum Power Point In The Solar Cell
Kobra Siahi - Mohammad Reza Arvan - Vahid Behnamgol - Mahdi Mosayebi
Optimal Probability Placement of the Charge Station of Electric Vehicles in a Distributed Power Network Containing the DG using the Queuing Theory
Mohammadreza Mousavi khademi - Ebrahim Kazemi - Mehdi Zareian Jahromi
Design of a 2MW Medium Voltage Conventional Hybrid DC Circuit Breaker for Railway Application
Seyed Hamid Khalkhali - Mohsen Taghizadeh Kejani - Ali Asghar Razi Kazemi
ZYNQ Based Real-Time Data Logger with 256 kSPS Sampling using Ethernet Interface
Alireza Eteghad - Ataollah Panahgholi - Esmaeil Najafiaghdam
Design and Simulation of Axial Flux Permanent Magnet Electrical Machine for Electric Vehicles Application
Hamid Radmanesh - Reza Sharifi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3