0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Deep Learning based Electrical Load Forecasting using Temporal Fusion Transformer and Trend-Seasonal Decomposition
نویسندگان :
Ehsan Saadipour-Hanzaie
1
Mohammad-Amin Pourmoosavi
2
Turaj Amraee
3
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Deep Learning،Deep Neural Networks،Load Forecasting،Temporal Fusion Transformer،Time-series Decomposition
چکیده :
Secure and consistent electrical power supply is promised by smart grids. Moreover, high-tech monitoring and metering instruments provoked smart grids into more self-controlled and automated systems. Therefore, load forecasting with high accuracy is fundamentally required at the individual and aggregated level of the power system for planning and operation studies. Deep neural networks have proved their capability of time-series forecasting in different fields. As well, Transformer architecture was a revolution in deep neural networks with outstanding performance in different fields. So far, Temporal Fusion Transformer (TFT) is one of the leading neural networks based on the Transformer concept. The TFT model is designed particularly for stochastic time-series forecasting, which reveals high-accuracy forecasting results. In this paper, TFT is employed as the backbone neural network architecture for electrical load forecasting. Furthermore, a trend-seasonal decomposition method is utilized based on the moving-average concept to break down the original time series into the trend and seasonal components. Trend-seasonal decomposition can provide a bright view of time series over time. The proposed model is tested on Iran's historical load data to validate the performance of mid-term load forecasting. However, the proposed method is robust for any time horizon. Results demonstrate notable improvements in the forecasting accuracy of the proposed model compared to the original TFT.
لیست مقالات
لیست مقالات بایگانی شده
A 20W High Gain Power Amplifier
Hamid Taleb-Alhagh-Nia - Reza Rezaei Siahrood - Hamed Sajadinia
طراحی و ساخت تقویت کننده توان اصلاح شده مقاومتی-راکتیوی باند گسترده کلاس B/J با گین بالا در توان خروجی پشتی و شرایط بایاس کلاس AB
سارا آقاجانی - محمود کمره ای - مرضیه چگینی
DWT-Based Epileptic Seizure Detection Using Fuzzy Logic Model with Entropy and Table Lookup Scheme
Alireza Mohammadi - Arvin Esfandyari - Ali Doustmohammadi - Amir Abolfazl Suratgar - Masoud Shafiee
A Lightweight Authentication Protocol For M2M Communication In IIoT Using Physical Unclonable Functions
Elaheh Kharghani - Saeed Aliakbari - Javad Bidad - Amir masoud Aminian moddares
An Ensemble Model for Sleep Stages Classification
Sahar Hassanzadeh Mostafaei - Jafar Tanha - Amir Sharafkhaneh - Zohair Hassanzadeh Mostafaei - Mohammed Hussein Ali Al-jaf - Alireza Fakhim babaei
Robust Optimal Hardening for Resilience Enhancement of Power System
Fardin Hasanzad - Hassan Rastegar
مکان یابی بهینه ذخیره سازهای متحرک انرژی الکتریکی با هدف بهبود تاب آوری سیستم توزیع قبل از طوفان
سبحان آقابابایی - محمد صادق سپاسیان
Design and Manufacturing of a Programmable Spin Coater Based on a Brushless DC Motor
MirBehrad Mousavi - Saeed Javadizadeh - Seyed Ahmadreza Firoozabadi - Majid Badieirostami
Design of a highly efficient photoconductive terahertz modulator enhanced by photonic crystal resonant cavity
Faramarz Alihosseini - Zahra Heshmatpanah - Hesam Zandi
Underwater Image Quality Assessment via Color and Contrast Analysis
Meysam Ghalyani - Maryam Karimi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2