0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Deep Learning based Electrical Load Forecasting using Temporal Fusion Transformer and Trend-Seasonal Decomposition
نویسندگان :
Ehsan Saadipour-Hanzaie
1
Mohammad-Amin Pourmoosavi
2
Turaj Amraee
3
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Deep Learning،Deep Neural Networks،Load Forecasting،Temporal Fusion Transformer،Time-series Decomposition
چکیده :
Secure and consistent electrical power supply is promised by smart grids. Moreover, high-tech monitoring and metering instruments provoked smart grids into more self-controlled and automated systems. Therefore, load forecasting with high accuracy is fundamentally required at the individual and aggregated level of the power system for planning and operation studies. Deep neural networks have proved their capability of time-series forecasting in different fields. As well, Transformer architecture was a revolution in deep neural networks with outstanding performance in different fields. So far, Temporal Fusion Transformer (TFT) is one of the leading neural networks based on the Transformer concept. The TFT model is designed particularly for stochastic time-series forecasting, which reveals high-accuracy forecasting results. In this paper, TFT is employed as the backbone neural network architecture for electrical load forecasting. Furthermore, a trend-seasonal decomposition method is utilized based on the moving-average concept to break down the original time series into the trend and seasonal components. Trend-seasonal decomposition can provide a bright view of time series over time. The proposed model is tested on Iran's historical load data to validate the performance of mid-term load forecasting. However, the proposed method is robust for any time horizon. Results demonstrate notable improvements in the forecasting accuracy of the proposed model compared to the original TFT.
لیست مقالات
لیست مقالات بایگانی شده
Medical Ultrasound Image Restoration in Presence of Defective Transducer Elements
Mohammad Saeed Zare Dehabadi - Mehran Jahed
The Effect of Cavity Length on Two-State Quantum Dot Laser Performance
Gholamreza Babaabasi - Mohammad Mohsen Sheikhey - Sara Alaei
Absorption Enhancement in Thin-Film Solar Cells using Integrated Photonic Topological Insulators
Mohammad Ali Shameli - Leila Yousefi
Noninvasive Blood Pressure Classification Based on Photoplethysmography Using Machine Learning Techniques
Hanieh Mohammadi - Bahram Tarvirdizadeh - Khalil Alipour - Mohammad Ghamari
A Novel RBFNN-Based Triple Terminal Sliding Mode Control for robotic manipulators
Mahdi Armoon - Marzie Lafouti - Babak Tavassoli - Hamid D.Taghirad
Sensor Faults Diagnosis in T-S Fuzzy Discrete Descriptor Systems Using Design a New Unknown Input Observer
Masoud Shafiee - Amir Abolfazl Suratgar - Mehdi Mirshahi
Image-Based Self-Localization Using Differential Observation Angle Based on Real-World Features
Seyed Mohammad Bagher Seyedin - Mahdi Goodarzi - Fereidoon Behnia
Realization of a high-resolution plasmonic refractive index sensor based on double-nanodisk shaped resonators
Leila Hajshahvaladi - Hassan Kaatuzian - Mohammad Danaie - Ghazaleh Nourbakhsh
بخشبندی خودکار تصاویر تشدید مغناطیسی ستون فقرات کمری با شبکه سِگیونِت
محمد انصاری فرد - رضا آقایی زاده ظروفی
یک روش اقتصادی برای تعیین مکان بهینه ریکلوزرها در فیدرهای توزیع شعاعی با هدف بهبود قابلیت اطمینان
محمودرضا شاکرمی - میثم دوستی زاده - هومن بسطامی - مهران امیری - ابراهیم شریفی پور - شمس الدین کمالوند
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4