0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Deep Learning based Electrical Load Forecasting using Temporal Fusion Transformer and Trend-Seasonal Decomposition
نویسندگان :
Ehsan Saadipour-Hanzaie
1
Mohammad-Amin Pourmoosavi
2
Turaj Amraee
3
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Deep Learning،Deep Neural Networks،Load Forecasting،Temporal Fusion Transformer،Time-series Decomposition
چکیده :
Secure and consistent electrical power supply is promised by smart grids. Moreover, high-tech monitoring and metering instruments provoked smart grids into more self-controlled and automated systems. Therefore, load forecasting with high accuracy is fundamentally required at the individual and aggregated level of the power system for planning and operation studies. Deep neural networks have proved their capability of time-series forecasting in different fields. As well, Transformer architecture was a revolution in deep neural networks with outstanding performance in different fields. So far, Temporal Fusion Transformer (TFT) is one of the leading neural networks based on the Transformer concept. The TFT model is designed particularly for stochastic time-series forecasting, which reveals high-accuracy forecasting results. In this paper, TFT is employed as the backbone neural network architecture for electrical load forecasting. Furthermore, a trend-seasonal decomposition method is utilized based on the moving-average concept to break down the original time series into the trend and seasonal components. Trend-seasonal decomposition can provide a bright view of time series over time. The proposed model is tested on Iran's historical load data to validate the performance of mid-term load forecasting. However, the proposed method is robust for any time horizon. Results demonstrate notable improvements in the forecasting accuracy of the proposed model compared to the original TFT.
لیست مقالات
لیست مقالات بایگانی شده
Wideband Rat-race Hybrid Coupler Using Ridge Gap Waveguide Technology
Zahra Akhoondmahdi - Ahmad Bakhtafrouz
Cascaded Multilevel Inverter with Reduced Switch Count
Mohammadamin Aalami - Ebrahim Babaei - Saeid Ghassem Zadeh
Deep Learning Meets Explainable AI: A Robust Framework for X-Ray Fracture Detection
Ali Tamizifar - Shakiba Berenjkoub - Mina Amiri
تخمین کانال متغیربازمان در سیستمهای MIMO – موجمیلیمتری چندکاربره
زهرا معروفی - امیرحسین مولازاده - مهرداد اردبیلیپور
طراحی بهینه پارکینگ خودروهای برقی با در نظر گرفتن عدم قطعیت منابع انرژی تجدیدپذیر
سید محمد هاشمی مصیر - میثم جعفری نوکندی - محمد بزرگپور رودباری
ℒ1 Adaptive Control Design Using CMPC: Applied to Single-Link Flexible Joint Manipulator
Hossein Ahmadian - Heidar Ali Talebi - Iman Sharifi
Age of Information Optimization for Multi-hop VLC/RF IoT Sensor Networks
Hossein Khodi - Paeiz Azmi - Nader Mokari - Mohammadreza Javan - Hamid Saeedi - Murat Uysal
Analysis Effect of Arrangement of Winding on the Electromagnetic Performance of HTS Squirrel Cage Induction Motor
Nima Arish - Hamid Yaghobi
ارزیابی کیفیت و موفقیت های پیوند کلیه
علی رفیعی پور - بهزاد خلجی امامزاده عباسی - زینب زالی - مسعودرضا هاشمی
بهینه سازی تزویج فیبر نوری باریک شده و موجبر نوری بر بستر پلیمر
مهتاب حسینعلی زاده - مونا ثریا - غلام محمد پارسا نسب - شکراله کریمیان
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3