0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Deep Learning based Electrical Load Forecasting using Temporal Fusion Transformer and Trend-Seasonal Decomposition
نویسندگان :
Ehsan Saadipour-Hanzaie
1
Mohammad-Amin Pourmoosavi
2
Turaj Amraee
3
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Deep Learning،Deep Neural Networks،Load Forecasting،Temporal Fusion Transformer،Time-series Decomposition
چکیده :
Secure and consistent electrical power supply is promised by smart grids. Moreover, high-tech monitoring and metering instruments provoked smart grids into more self-controlled and automated systems. Therefore, load forecasting with high accuracy is fundamentally required at the individual and aggregated level of the power system for planning and operation studies. Deep neural networks have proved their capability of time-series forecasting in different fields. As well, Transformer architecture was a revolution in deep neural networks with outstanding performance in different fields. So far, Temporal Fusion Transformer (TFT) is one of the leading neural networks based on the Transformer concept. The TFT model is designed particularly for stochastic time-series forecasting, which reveals high-accuracy forecasting results. In this paper, TFT is employed as the backbone neural network architecture for electrical load forecasting. Furthermore, a trend-seasonal decomposition method is utilized based on the moving-average concept to break down the original time series into the trend and seasonal components. Trend-seasonal decomposition can provide a bright view of time series over time. The proposed model is tested on Iran's historical load data to validate the performance of mid-term load forecasting. However, the proposed method is robust for any time horizon. Results demonstrate notable improvements in the forecasting accuracy of the proposed model compared to the original TFT.
لیست مقالات
لیست مقالات بایگانی شده
A Design Technique For Linear Desensitized LNAs
Masoumeh Sabzi - Mahmoud Kamarei - Yann Mahe - Tchanguiz Razban-Haghighi
Machine Learning-based Fundamental Stock Prediction Using Companies’ Financial Reports
Hossein Rezaei - Kamran Abdi - Mohsen Hooshmand
Multi-Agents Gaussian Estimation and Coverage Control Client-Server Architecture
Mohammad َAzizian Shishavan - Mahdi Zeinali - Azam Salari
طراحی تقویت کننده توان موج میلی متری پهن باند در فناوری سی ماس برای کاربردهای نسل پنجم
سید محمد مهدی جعفری - صمد شیخایی
Effective Service Restoration in Electrical Distribution Networks Using a Bi-Stage Algorithm
Qasem Asadi - Amir Amini - Hamid Falaghi - Maryam Ramezani
Coherent Direction of Arrival Estimation using Multiple Toeplitz Space Time Spatial Smoothing
Sepehr Kouzegaran - MASOUMEH AZGHANI
Solving the inverse problem for EEG signals when learning a new motor task using GRU neural network
Milad Khosravi - Fariba Bahrami - Behzad Moshiri - Ahmad Kalhor
طراحی و بررسی یک اینورتر چند سطحی جدید با کاهش تعداد ادوات قدرت به کار گرفته شده
حسین جعفری - داریوش نظرپور - سجاد گلشن نواز - ابراهیم بابائی
رمز نگاری داده های EEGبا کلید ترکیبی RSA-AESبرای بالا بردن امنیت و بهینه سازی مدت زمان رمزگذاری و رمز گشایی
حجت قیمت گر - پریسا قربانی
Design and fabrication tip tapered fiber optic dopamine sensor based on LSPR
Roksana Esmaeilpour - Mohammad Ismail zibaii - Masoumeh Barkand - Marzieh Pajouhandeh - Soroush Rostami - Mehdi Banihashemi - Mohammad-Mahdi Babakhani-fard
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4