0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Deep Learning based Electrical Load Forecasting using Temporal Fusion Transformer and Trend-Seasonal Decomposition
نویسندگان :
Ehsan Saadipour-Hanzaie
1
Mohammad-Amin Pourmoosavi
2
Turaj Amraee
3
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Deep Learning،Deep Neural Networks،Load Forecasting،Temporal Fusion Transformer،Time-series Decomposition
چکیده :
Secure and consistent electrical power supply is promised by smart grids. Moreover, high-tech monitoring and metering instruments provoked smart grids into more self-controlled and automated systems. Therefore, load forecasting with high accuracy is fundamentally required at the individual and aggregated level of the power system for planning and operation studies. Deep neural networks have proved their capability of time-series forecasting in different fields. As well, Transformer architecture was a revolution in deep neural networks with outstanding performance in different fields. So far, Temporal Fusion Transformer (TFT) is one of the leading neural networks based on the Transformer concept. The TFT model is designed particularly for stochastic time-series forecasting, which reveals high-accuracy forecasting results. In this paper, TFT is employed as the backbone neural network architecture for electrical load forecasting. Furthermore, a trend-seasonal decomposition method is utilized based on the moving-average concept to break down the original time series into the trend and seasonal components. Trend-seasonal decomposition can provide a bright view of time series over time. The proposed model is tested on Iran's historical load data to validate the performance of mid-term load forecasting. However, the proposed method is robust for any time horizon. Results demonstrate notable improvements in the forecasting accuracy of the proposed model compared to the original TFT.
لیست مقالات
لیست مقالات بایگانی شده
Leader-Following H_∞ Fault-Tolerant Consensus of Nonlinear Multi-agent Systems with External Disturbances
Maryam Salimifard - Heidar Ali Talebi
تشخیص حالت عادی و غیرعادی شبکه برق هوشمند با استفاده از شبکه عصبی مصنوعی
محمد گنج خانی - علی عباسپورطهرانی فرد - سجاد فتاحیان دهکردی - محمد غلامی
A Wideband White and Colored Noise Generator as an Environmental Communication Systems Controller
Somayeh Mehraban - Nasser Masoumi
Wind-Robust Sea-Ice Discrimination from Sentinel-1 Texture Features
Parsa Shamsaddini - Ahmad Keshavarz - Stefano Zecchetto
Energy-Efficient Residue-to-Binary Conversion Based on a Modulo-Adder-Free Architecture
Kamalaldin Mozaffari Maid - Amir Sabbagh Molahosseini
بررسی تحلیلی به کارگیری ریزشبکه برای مصرف کننده های پر مصرف مسکونی در ایران
عنایت الله محقق - حبیب رجبی مشهدی
Effects of Derating Factor and Minimum Short Circuit Current on the BOP Cable Sizing of a Power Plant
Hossein Zamanpour abyaneh
یک روش تشخیص و تصحیح خطا برای بلوک های داده
سعیده صادقی - محسن راجی
Fragmentation-aware Coordinated Virtual Optical Network Embedding Algorithm Over Elastic Optical Networks
Niusha Sabri Kadijani - Lotfollah Beygi
A Circularly Polarized Metal-Only Holographic Leaky-Wave Antenna Based on Spoof Surface Plasmon Polaritons
Reza Ashrafi Mohabadi - Sajjad Zohrevand - Mohammad Amin Chaychizadeh - Nader Komjani
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0