0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
CNN-LSTM model for Confusion Classification; using Single-Channel EEG
نویسندگان :
Amirhossein Aran
1
Zahra Ghanbari
2
Mohammad Hassan Moradi
3
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
کلمات کلیدی :
CNN-LSTM model،Confusion detection،Single-Channel،Classification،Electroencephalography
چکیده :
Brain fog, characterized by decreased mental clarity and memory problems, is a common phenomenon that affects both healthy individuals and those with mental disorders. Detecting and alleviating brain fog is essential for activities such as driving and online learning. Electroencephalography (EEG) is an effective method for monitoring brain activity and identifying confusion. “Confused student EEG brainwave data” from the Kaggle challenge “EEG Brainwaves for Confusion,” consists of single-channel EEG recordings of ten students exposed to easy and difficult video stimulation is used in this paper. We take benefit from a powerful interpretable hybrid convolutional neural network and long short-term memory (CNN-LSTM) model. CNN-LSTM processes EEG signals through CNN for feature extraction, followed by the LSTM for temporal analysis and data classification using a Softmax layer. This is the first time that CNN-LSTM is used for single channel EEG confusion classification. The model achieves 93.44% accuracy, 92.53% precision, 94.79% recall, and 93.65% F1 score. These results are dramatically higher than previous studies, which demonstrates the potential of CNN-LSTM model in effectively distinguishing confusion and non-confusion states in EEG signals, providing a promising method for real-time confusion detection.
لیست مقالات
لیست مقالات بایگانی شده
The Use of Additive Decomposition and Deep Neural Network for Photovoltaic Power Forecasting
Fariba Dehghan - Mohsen Parsa Moghaddam - Maryam Imani
MAD-TI: Meta-path Aggregated-Graph Attention Network for Drug Target Interaction Prediction
Reza Shami Tanha - Maryam Sadighian - Arash Zabihian - Mohsen Hooshmand - Mohsen Afsharchi
Joint Request Aggregation and Content Caching at the Edge via Named Data Networking
Parisa Bakhtou - Siavash Khorsandi
Integration of P2G and Renewables in Stochastic Day-ahead Electricity-Gas Scheduling
Mojtaba Choghaei - Mohammad Kazem Sheikh-El-Eslami
Transfer learning using deep convolutional neural network for predicting dementia severity
Vahid Asayesh - Mehdi Dehghani - Majid Torabi Nikjeh - Sepideh Akhtari khosrowshahi
Multi-agent H-Learning Based Cooperative Spectrum Sensing for Cognitive Radio Networks
Elaheh Karimpour Fard - Mahdi Nouri - Hamid Behroozi - Sima Sobhi-Givi
Incentive-based Demand Response Economic Model for Peak Shaving Considering Load Serving Entity Profit Maximization
Nasim EslamiNia - Habib RajabiMashhdi
A High Gain, High IIP3, Perfect Input Matching, Programmable Gain LNA in CMOS Technology
Amirhossein Tajik - Seyedali Samareh Taherinasab - Samad Sheikhaei
Simultaneous Sensor and Actuator Faults Diagnosis in Fornasini-Marchesini Second Model Using Design Unknown Input Observer
Masoud Shafiee - Mehdi Mirshahi
Autoencoders for Input Reduction in Interval Type-2 Hyperbolic Fuzzy System Identification and Control: Experimental Results
Behnaz Mohammadi - Nazanin Ildarabadi - Mohammad-R Akbarzadeh-T
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4