0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
CNN-LSTM model for Confusion Classification; using Single-Channel EEG
نویسندگان :
Amirhossein Aran
1
Zahra Ghanbari
2
Mohammad Hassan Moradi
3
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
کلمات کلیدی :
CNN-LSTM model،Confusion detection،Single-Channel،Classification،Electroencephalography
چکیده :
Brain fog, characterized by decreased mental clarity and memory problems, is a common phenomenon that affects both healthy individuals and those with mental disorders. Detecting and alleviating brain fog is essential for activities such as driving and online learning. Electroencephalography (EEG) is an effective method for monitoring brain activity and identifying confusion. “Confused student EEG brainwave data” from the Kaggle challenge “EEG Brainwaves for Confusion,” consists of single-channel EEG recordings of ten students exposed to easy and difficult video stimulation is used in this paper. We take benefit from a powerful interpretable hybrid convolutional neural network and long short-term memory (CNN-LSTM) model. CNN-LSTM processes EEG signals through CNN for feature extraction, followed by the LSTM for temporal analysis and data classification using a Softmax layer. This is the first time that CNN-LSTM is used for single channel EEG confusion classification. The model achieves 93.44% accuracy, 92.53% precision, 94.79% recall, and 93.65% F1 score. These results are dramatically higher than previous studies, which demonstrates the potential of CNN-LSTM model in effectively distinguishing confusion and non-confusion states in EEG signals, providing a promising method for real-time confusion detection.
لیست مقالات
لیست مقالات بایگانی شده
On the Impact of Probabilistic Shaping on Fiber Nonlinearities
Ahmad Tanha - Hami Rabbani - Lotfollah Beygi
طراحی تقویت کننده توان موج میلی متری پهن باند در فناوری سی ماس برای کاربردهای نسل پنجم
سید محمد مهدی جعفری - صمد شیخایی
Model Predictive Control for a 3-DoF Suspended Cable Robot Based on Laguerre Functions
Shiva Khoshkam - Mohammad A. Khosravi - Rasul FesharakiFard
Object Detection enhancement based on Super-Resolution Mapping
Danial Abyazi - Dadfar Abyazi - Mehran Yazdi
Investigation the Effects of Partial discharge Pulse Characteristics on its Propagation in Stator Windings
Arash Abyaz - Mohammad Hamed Samimi - Amir Abbas Shayegani Akmal
H_∞ Robust Constrained Control of Fuzzy-based Continuous-Time Nonlinear Systems
Mohsen Farbood - Mokhtar Shasadeghi - Taher Niknam - Behrouz Safarinejadian
A 0.5-V Ultra-Low-Power Low-Pass-filter with Low Noise for ECG detection system
Yasin Heydarzadeh - Mehran Khanehbeygi - Sajad Sohrabian - Ziaddin Daie Koozehkanani
بکارگیری یادگیری عمیق در ارزیابی به هنگام پایداری ولتاژ کوتاه مدت با استفاده از داده های اندازه گیری فازوری
امیرحسین باباعلی - محمدتقی عاملی
Implementation of a 14-Channel Real-time Compact Data Logger for Structure and Mechanical Engineering Laboratories
Keivan Sadeghinezhad - Esmaeil Najafiaghdam - Sara Dezhakam - Ali Sadeghinezhad
توسعه نرمافزار تخمین عملکرد خطوط انتقال در برابر پدیده صاعقه
سعید شیرمحمدی - رضا شریعتی نسب - کاظم علیشاهی - سامان قهقه زاده
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1