0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
CNN-LSTM model for Confusion Classification; using Single-Channel EEG
نویسندگان :
Amirhossein Aran
1
Zahra Ghanbari
2
Mohammad Hassan Moradi
3
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
کلمات کلیدی :
CNN-LSTM model،Confusion detection،Single-Channel،Classification،Electroencephalography
چکیده :
Brain fog, characterized by decreased mental clarity and memory problems, is a common phenomenon that affects both healthy individuals and those with mental disorders. Detecting and alleviating brain fog is essential for activities such as driving and online learning. Electroencephalography (EEG) is an effective method for monitoring brain activity and identifying confusion. “Confused student EEG brainwave data” from the Kaggle challenge “EEG Brainwaves for Confusion,” consists of single-channel EEG recordings of ten students exposed to easy and difficult video stimulation is used in this paper. We take benefit from a powerful interpretable hybrid convolutional neural network and long short-term memory (CNN-LSTM) model. CNN-LSTM processes EEG signals through CNN for feature extraction, followed by the LSTM for temporal analysis and data classification using a Softmax layer. This is the first time that CNN-LSTM is used for single channel EEG confusion classification. The model achieves 93.44% accuracy, 92.53% precision, 94.79% recall, and 93.65% F1 score. These results are dramatically higher than previous studies, which demonstrates the potential of CNN-LSTM model in effectively distinguishing confusion and non-confusion states in EEG signals, providing a promising method for real-time confusion detection.
لیست مقالات
لیست مقالات بایگانی شده
Integration of Deep Learning Techniques in Stock Market Forecasting: xLSTM-CNN with RevIN and Adaptive Wavelet Denoising
Alireza Mohammadi - Ali Doustmohammadi - Masoud Shafiee
A New 10 Watt 1.6 GHz Linear Power Amplifier with More than 11 dB Gain
Marzieh Chegini - HojjatAllah Nemati - Mahmoud Kamarei
Power Consumption and I/Q-to-Phase Analysis in Direct Demodulation Approaches
Mir mahdi Safari - Jafar Pourrostam
Finite-Time Bipartite Time-Varying Formation tracking for Heterogeneous Nonlinear Multi-Agent Systems
Mohammad Reza Mehrabi Koushki - Javad Askari - Marzieh Kamali
An improved ECG segmentation method based on adaptive Hermite functions
Abazar Arabameri - Sajad Haghzad Klidbary
Energy Allocation Methods in NOMA Modulation Using Machine Learning Algorithms in the Presence of Jamming
Khashayar Saremi - Bahareh Akhbari
Conserving Power Consumption in Elastic Optical Networks using Deep Learning
Fatemeh Dehrouyeh - Sina Tavakolian - Lotfollah Beygi
Design and Simulation of Long Slot SIW Leaky Wave Antenna for Automotive Radar Application
Jamal Kazazi - Alireza Rahmani - Mahmoud Kamarei
Lane Change Decision Making Using Deep Reinforcement Learning
Pedram Lamei - Mohammad Haeri
An event-triggered distributed consensus information filter for target tracking in sensor networks
Sara Giyani - Behrouz Safarinejadian - Sajad Shamsi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2