0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
CNN-LSTM model for Confusion Classification; using Single-Channel EEG
نویسندگان :
Amirhossein Aran
1
Zahra Ghanbari
2
Mohammad Hassan Moradi
3
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
کلمات کلیدی :
CNN-LSTM model،Confusion detection،Single-Channel،Classification،Electroencephalography
چکیده :
Brain fog, characterized by decreased mental clarity and memory problems, is a common phenomenon that affects both healthy individuals and those with mental disorders. Detecting and alleviating brain fog is essential for activities such as driving and online learning. Electroencephalography (EEG) is an effective method for monitoring brain activity and identifying confusion. “Confused student EEG brainwave data” from the Kaggle challenge “EEG Brainwaves for Confusion,” consists of single-channel EEG recordings of ten students exposed to easy and difficult video stimulation is used in this paper. We take benefit from a powerful interpretable hybrid convolutional neural network and long short-term memory (CNN-LSTM) model. CNN-LSTM processes EEG signals through CNN for feature extraction, followed by the LSTM for temporal analysis and data classification using a Softmax layer. This is the first time that CNN-LSTM is used for single channel EEG confusion classification. The model achieves 93.44% accuracy, 92.53% precision, 94.79% recall, and 93.65% F1 score. These results are dramatically higher than previous studies, which demonstrates the potential of CNN-LSTM model in effectively distinguishing confusion and non-confusion states in EEG signals, providing a promising method for real-time confusion detection.
لیست مقالات
لیست مقالات بایگانی شده
بخشبندی خودکار تصاویر تشدید مغناطیسی ستون فقرات کمری با شبکه سِگیونِت
محمد انصاری فرد - رضا آقایی زاده ظروفی
Study of Plasmonic Perfect Absorber Using Three Dimensional Silver Double Triangle-Shaped Nanoparticles
Mohammad Reza Rakhshani
Structural Stability and Electron Density Analysis of Doped Antimonene: A First-Principles Study
Arash Yazdanpanah Goharrizi - Peyman Saberi Parsa
A Novel RBFNN-Based Triple Terminal Sliding Mode Control for robotic manipulators
Mahdi Armoon - Marzie Lafouti - Babak Tavassoli - Hamid D.Taghirad
A Design Methodology for Submicron Low-Voltage Bandgap Voltage Reference
Mehdi Samavati - Samad Sheikhaei - Mohsen Jalali
شناسایی گرههای مهم سیستم قدرت با استفاده از ابزار شبکههای پیچیده و مرکزیتهای مبتنی بر تشخیص جامعه
سپهر مردانی - علی کریمی - مهران معماری
Displacement Estimation for Ultrasound Elastography based on a Robust Uniform Stretching Method
Zahra Hosseini - Ali Khadem - Mohammadreza Hassannejad Bibalan
Deep SqueezeNet Based Technique for Detection of High Impedance Arcing Faults in Electric Power Distribution Networks
Amin Mohammadi - Mohsen Jannati - Mohammadreza Shams
Efficiency Estimation Methods of In-Service Induction Motors-A Review
Moslem Geravandi - Hassan Moradi CheshmehBeigi
Ultrahigh Step-Up Non-Isolated DC-DC Converter Based on Quadratic Converter without Coupled Inductor
Sajad Rostami - Vahid Abbasi - Masoumeh Parastesh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3