0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
CNN-LSTM model for Confusion Classification; using Single-Channel EEG
نویسندگان :
Amirhossein Aran
1
Zahra Ghanbari
2
Mohammad Hassan Moradi
3
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
کلمات کلیدی :
CNN-LSTM model،Confusion detection،Single-Channel،Classification،Electroencephalography
چکیده :
Brain fog, characterized by decreased mental clarity and memory problems, is a common phenomenon that affects both healthy individuals and those with mental disorders. Detecting and alleviating brain fog is essential for activities such as driving and online learning. Electroencephalography (EEG) is an effective method for monitoring brain activity and identifying confusion. “Confused student EEG brainwave data” from the Kaggle challenge “EEG Brainwaves for Confusion,” consists of single-channel EEG recordings of ten students exposed to easy and difficult video stimulation is used in this paper. We take benefit from a powerful interpretable hybrid convolutional neural network and long short-term memory (CNN-LSTM) model. CNN-LSTM processes EEG signals through CNN for feature extraction, followed by the LSTM for temporal analysis and data classification using a Softmax layer. This is the first time that CNN-LSTM is used for single channel EEG confusion classification. The model achieves 93.44% accuracy, 92.53% precision, 94.79% recall, and 93.65% F1 score. These results are dramatically higher than previous studies, which demonstrates the potential of CNN-LSTM model in effectively distinguishing confusion and non-confusion states in EEG signals, providing a promising method for real-time confusion detection.
لیست مقالات
لیست مقالات بایگانی شده
A New Unsupervised Feature Learning Method for Object Recognition using Prior-Knowledge Data
Ashkan Farrokhi - Hadi Seyedarabi
Structural Stability and Electron Density Analysis of Doped Antimonene: A First-Principles Study
Arash Yazdanpanah Goharrizi - Peyman Saberi Parsa
Design and Analysis of Concentrated Field TFPM Generator for Direct-Drive Wind Turbines
Maryam Salehi - Ahmad Darabi - Aghil Ghaheri - Mohammad Hoseintabar Marzebali
Switched-Inductor Cuk and SEPIC Power Factor Correction Rectifiers
Maryam Pourmahdi-torghabe - Hamed Heydari-doostabad - Reza Ghazi
پیش بینی قیمت انرژی الکتریکی در بازار روز بعد با استفاده از شبکه عصبی مصنوعی تعمیم یافته و با در نظر گرفتن محدودیت سوخت رسانی
حسین صابر - سعید محسنی - رضا پورآقابابا - مصطفی یحیی آبادی
Temperature Prediction of Lithium-Ion Batteries for Thermal Management Systems Using Graph Convolutional Networks
Sepehr Ghalebi - Elaheh Sadat Ahmadi Mousavi - Farzaneh Abdollahi - Farschad Torabi
تاثیر روشهای کاهش سناریو و عدم قطعیتهای چندمتغیره بر عملکرد هاب انرژی
مهسا نعمتی فر - حسین شریف زاده
Numerical Study of a Microfluidic-Based Motile Sperm Enrichment Using Sperm Rheotactic Behavior
Mohammadjavad Bouloorchi - Saeed Javadizadeh - Aref Valipour - MirBehrad Mousavi - Majid Badieirostami
Multiphysics Analysis of HTS Transformer utilizing Stainless Steel Stabilizer on Short Circuit Condition
Ashkan Mirzaei Rajeooni - Hossein Heydari - Mohammad Khakroei - Mahdi Rahimi Pirbasti
Design and Practical Implementation of Internal Model Controller for Temperature Regulation of Thermoelectric Cell
Parastoo Kamali - Sanaz Iman Shayan - Mahshid Mousapour - Fatemeh Abdolsamadi - Salar Zeinali - Sadra Rafatnia
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2