0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
CNN-LSTM model for Confusion Classification; using Single-Channel EEG
نویسندگان :
Amirhossein Aran
1
Zahra Ghanbari
2
Mohammad Hassan Moradi
3
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
کلمات کلیدی :
CNN-LSTM model،Confusion detection،Single-Channel،Classification،Electroencephalography
چکیده :
Brain fog, characterized by decreased mental clarity and memory problems, is a common phenomenon that affects both healthy individuals and those with mental disorders. Detecting and alleviating brain fog is essential for activities such as driving and online learning. Electroencephalography (EEG) is an effective method for monitoring brain activity and identifying confusion. “Confused student EEG brainwave data” from the Kaggle challenge “EEG Brainwaves for Confusion,” consists of single-channel EEG recordings of ten students exposed to easy and difficult video stimulation is used in this paper. We take benefit from a powerful interpretable hybrid convolutional neural network and long short-term memory (CNN-LSTM) model. CNN-LSTM processes EEG signals through CNN for feature extraction, followed by the LSTM for temporal analysis and data classification using a Softmax layer. This is the first time that CNN-LSTM is used for single channel EEG confusion classification. The model achieves 93.44% accuracy, 92.53% precision, 94.79% recall, and 93.65% F1 score. These results are dramatically higher than previous studies, which demonstrates the potential of CNN-LSTM model in effectively distinguishing confusion and non-confusion states in EEG signals, providing a promising method for real-time confusion detection.
لیست مقالات
لیست مقالات بایگانی شده
Improving Adaptive Algorithm to Reduce Grounding System Impedance Computing Time
Soheil Rahnamayian Jelodar - Seyed Hossein Hesamedin Sadeghi - Reza Rahmani - Mohammad Ali Narooie Dehchil - Hossein Askarian Abyaneh
Denoising of the Diffusion Tensor Imaging Data Using k-Space Redundancy
Khashayar Esmaeilzadeh - Farzaneh Keyvanfard - Abbas Nasiraei Moghaddam
Design of Dual-beam Orthogonal Circular Polarized Leaky-wave Holographic Antenna
Mohammad Amin Chaychizadeh - Nader Komjani
Enhanced Current Commutation Drive Circuit for Hybrid DC Circuit Breaker
Alireza Jaafari - Sadegh Mohsenzade - Ali Asghar Razi-Kazemi
نحوه کنترل سطوح هوشمند با قابلیت تنظیم مجدد در راستای مقابله با استراق سمع کننده ها
محمد کاظم ناطقی - زلفا زینل پور یزدی
Improving Spiking Neural Network Performance Using Astrocyte Feedback for Farsi Digit Recognition
Malihe Nazari - Fariba Bahrami - Mohammad Javad Yazdanpanah
P300 Evoked Related Potential Detection Based on Integration of Modified HOG and Convolutional Neural Networks
Pedram Havaei - Elham Mahmoudzadeh - Maryam Zekri
Slice-Aware Resource Calendaring in Cloud-based Radio Access Networks
Zeinab Sasan - Siavash Khorsandi
Application of Statistical Techniques and Machine Learning in Forecasting Distribution Network Load: A Real Case Study on the Iranian Power System
Hossein Jafari - Mohammad Sadegh Sepasian - Fatemeh Teimori
طراحی یک کنترلکننده غیرخطی تطبیقی غیرمتمرکز برای تنظیم ولتاژ ریزشبکههای DC در حالت جزیرهای
سمیه بهرامی - فاطمه صفایی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0