0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
CNN-LSTM model for Confusion Classification; using Single-Channel EEG
نویسندگان :
Amirhossein Aran
1
Zahra Ghanbari
2
Mohammad Hassan Moradi
3
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
کلمات کلیدی :
CNN-LSTM model،Confusion detection،Single-Channel،Classification،Electroencephalography
چکیده :
Brain fog, characterized by decreased mental clarity and memory problems, is a common phenomenon that affects both healthy individuals and those with mental disorders. Detecting and alleviating brain fog is essential for activities such as driving and online learning. Electroencephalography (EEG) is an effective method for monitoring brain activity and identifying confusion. “Confused student EEG brainwave data” from the Kaggle challenge “EEG Brainwaves for Confusion,” consists of single-channel EEG recordings of ten students exposed to easy and difficult video stimulation is used in this paper. We take benefit from a powerful interpretable hybrid convolutional neural network and long short-term memory (CNN-LSTM) model. CNN-LSTM processes EEG signals through CNN for feature extraction, followed by the LSTM for temporal analysis and data classification using a Softmax layer. This is the first time that CNN-LSTM is used for single channel EEG confusion classification. The model achieves 93.44% accuracy, 92.53% precision, 94.79% recall, and 93.65% F1 score. These results are dramatically higher than previous studies, which demonstrates the potential of CNN-LSTM model in effectively distinguishing confusion and non-confusion states in EEG signals, providing a promising method for real-time confusion detection.
لیست مقالات
لیست مقالات بایگانی شده
Optimal Probability Placement of the Charge Station of Electric Vehicles in a Distributed Power Network Containing the DG using the Queuing Theory
Mohammadreza Mousavi khademi - Ebrahim Kazemi - Mehdi Zareian Jahromi
Defects Dynamics in Multilayer h-BN Resistive Switching Memories: A Molecular Dynamics Investigation
Omid Babaeinejad - Maryam Keshavarz Afshar - Ebrahim Nadimi
Second-order Sliding Mode Control for DC-DC buck converter with input Voltage Ripple Elimination
Maede Azimi - Mehdi Asadi - Adel Zakipour
Improving ZVS performance in phase shift LLC converter using variable magnetizing inductor for wide input/output voltage range
Saeed Ramezani darvish - Kioumars Shahriyari - Salar Sadeghian - Adib Abrishamifar
User Identification Based on Hand Geometrical Biometrics Using Media-Pipe
Sara Ghanbari - Zahra Parvin Ashtyani - Mehdi Tale Masouleh
بهینه سازی تزویج فیبر نوری باریک شده و موجبر نوری بر بستر پلیمر
مهتاب حسینعلی زاده - مونا ثریا - غلام محمد پارسا نسب - شکراله کریمیان
Improving the Performance of Unified Power Quality Conditioner Using Interval Type 2 Fuzzy Control
Farzad Rastegar - Zohreh Paydar
مدل سازی فشرده و شبیه سازی گذار عایق به هادی در افزاره مات مبتنی بر VO2
پرناز عباسی - مجید شالچیان
The Comparison of MXene and Graphene-Based Antennas for 5G/6G Communications
Javad Shokri Seyyedi - Gholamreza Moradi - Reza Sarraf Shirazi - Sepehr Sahab - Abolfazl Ebrahimpour
MAD-TI: Meta-path Aggregated-Graph Attention Network for Drug Target Interaction Prediction
Reza Shami Tanha - Maryam Sadighian - Arash Zabihian - Mohsen Hooshmand - Mohsen Afsharchi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0