0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
CNN-LSTM model for Confusion Classification; using Single-Channel EEG
نویسندگان :
Amirhossein Aran
1
Zahra Ghanbari
2
Mohammad Hassan Moradi
3
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
کلمات کلیدی :
CNN-LSTM model،Confusion detection،Single-Channel،Classification،Electroencephalography
چکیده :
Brain fog, characterized by decreased mental clarity and memory problems, is a common phenomenon that affects both healthy individuals and those with mental disorders. Detecting and alleviating brain fog is essential for activities such as driving and online learning. Electroencephalography (EEG) is an effective method for monitoring brain activity and identifying confusion. “Confused student EEG brainwave data” from the Kaggle challenge “EEG Brainwaves for Confusion,” consists of single-channel EEG recordings of ten students exposed to easy and difficult video stimulation is used in this paper. We take benefit from a powerful interpretable hybrid convolutional neural network and long short-term memory (CNN-LSTM) model. CNN-LSTM processes EEG signals through CNN for feature extraction, followed by the LSTM for temporal analysis and data classification using a Softmax layer. This is the first time that CNN-LSTM is used for single channel EEG confusion classification. The model achieves 93.44% accuracy, 92.53% precision, 94.79% recall, and 93.65% F1 score. These results are dramatically higher than previous studies, which demonstrates the potential of CNN-LSTM model in effectively distinguishing confusion and non-confusion states in EEG signals, providing a promising method for real-time confusion detection.
لیست مقالات
لیست مقالات بایگانی شده
Application of Floquet theory in three-body problem: Periodic attitude motion
Ehsan Abbasali - Amirreza Kosari - Majid Bakhtiari
Modeling and optimal control of the vibration model of constrained buildings based on fractional order singular theory using orthogonal polynomials
Vahid Safari Dehnavi - Masoud Shafiee
Extended Phase Shift Control in Dual Active Bridge Converter Considering Magnetizing Inductance of Transformer
Masood Soleimanifard - Ali Yazdian Varjani
Integrating Model-Agnostic Meta-Learning with Advanced Language Embeddings for Few-Shot Intent Classification
Ali Rahimi - Hadi Veisi
تخمین نرختنفس با استفاده از ترکیب ویژگیهای سیگنال فوتوپلتیسموگرافی و مدل FCM-ANFIS
علیرضا باغبانی - سیده فاطمه مولایی زاده
Instantaneous Blind Audio Source Separation Using Characteristic Function of Heavy-Tailed Distributions
Kamran Rajabi - Mohammadreza Hassannejad Bibalan - Neda Faraji
Active and Passive Beamforming for Secure Wireless Communication via Star-RIS under imperfect CSI
Seyedeh Reyhane Shahcheragh - Kamal Mohamed-pour
Three Improved Boost Topologies with Continuous Input/Output Currents Suitable for High-Voltage Applications
Hossein Gholizadeh - Hesam Ehsan - Alireza Poursalan - Mohammad Hamed Samimi
طراحی کنترلکننده استروباسکوپ زمان واقعی مبتنی بر هوش مصنوعی برای سیستم های دورانی
مهدی مظفری - سعید جعفری نسب - حامد پورکاوه - سعید شمقدری
Flexible Generation Expansion Planning Considering Representative Days of Load and Renewable Variations
Peyman Amirian - Zeinab Maleki - Mohammad-Amin Pourmoosavi - Turaj Amraee
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4