0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Privacy-Preserving Model Predictive Control Using Secure Multi-Party Computation
نویسندگان :
Saeed Adelipour
1
Mohammad Haeri
2
1- Sharif university of technology
2- دانشگاه صنعتی شریف
کلمات کلیدی :
Model predictive control،Secret sharing،Multi-party computation،Privacy-preserving optimization،Projected gradient method
چکیده :
In this paper, a secure multi-party computation strategy based on secret sharing is used to derive a privacy-preserving model predictive control for a class of cyber-physical system. In the proposed framework, the underlying optimization problem of model predictive control is solved by a variation of projected gradient method. All required computations are carried out by outsourced computation units at the cloud level, while data privacy is maintained using a secret sharing scheme. The original values of system private parameters are not revealed to any external eavesdroppers and the cloud computing units. Simulation results demonstrate the efficiency of the proposed method in terms of performance and privacy.
لیست مقالات
لیست مقالات بایگانی شده
Mapping Human Grasping to 3-Finger Grippers: A Deep Learning Perspective
Fatemeh Naeinian - Elnaz Balazadeh - Mehdi Tale Masouleh
Average Secrecy Capacity Performance Analysis for SWIPT-Based SIMO Underlay Cognitive Radio
Mohammad Javad Saber1 - Seyedeh Maryam Mazloum - Seyed Mohammad Sajad Sadough
Design and Analysis of a New Hybrid Three-Phase Multilevel Inverter with Improved Specifications
Hossein Jafari - Daryoush Nazarpour - Sajjad Golshannavaz - Ebrahim Babaei
3D Microwave Imaging inside PEMC Cavity Using Combined-Norm Regularization Term and Modified CG Algorithm
Omid Babazadeh - Hassan Nasseri
Perfect Tracking of a Non-minimum Phase MIMO System
Saeedreza Tofighi - Farshad Merrikh-Bayat
Error Probability Analysis of Non-Orthogonal Multiple Access
Rozita Shafie - AliAkbar Tadaion - Zolfa Zeinalpour-Yazdi
RCS Calculation of a Symmetrical Microstrip Array Using Discrete Bodies of Revolution Method
Hossein Mohammadzadeh - Abolghasem Zeidaabadi Nezhad - Zaker Hossein Firouzeh
A novel clustering-based over-sampling technique for imbalanced data sets
Behzad Mirzaei - Hossein Nezamabadi-pour - Javad Mahmoodi
الگوریتم تشخیصی برای طبقه بندی سرطان خون لوسمی لنفوسیتی حاد با استفاده از شبکه های عصبی عمیق در یادگیری آنلاین
رضا گودرزی - علی جلالی - امید هاشمی پورتفرشی
A New Approach to Determine Maximum Allowable Penetration level of LSPVPPs Considering Transient Angle Stability
Siavash Yari - Hamid Khoshkhoo
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0