0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Depth Estimation in Monocular Images of Inside the Sewer Pipes for Navigation of Inspection Robots
نویسندگان :
Zeinab Maroufi
1
Alireza Hadi Hosseinabadi
2
Reza Askari moghadam
3
1- University of Tehran
2- University of Tehran
3- University of Tehran
کلمات کلیدی :
Depth،Estimation،Neural Network،Sewer Pipe
چکیده :
Estimating the depth of a scene from single monocular color images is a fundamental problem in image understanding. Depth estimation is a critical function for robotic tasks such as localization, mapping, and obstacle detection. Recent works based on the development of deep convolutional neural networks provide reliable results. Due to the low cost and relatively small size of monocular cameras, the performance of neural networks for depth estimation from single RGB image has increased significantly. Inspector robots move inside the sewer pipe in an ambiguous environment that has various contaminations and obstacles. As a result of understanding the environment inside the pipe and analyzing the images from the monocular camera, the robot can move more safely and perform the mission more effectively. This paper presents a new deep neural network, called SepiDepth-ASPP. Our approach uses the integration of ASPP and adaptive bins to extract strong global and local contextual features at multiple scales, and then translate them to higher resolutions for clearer depth maps. This network is specially designed for images inside the sewer pipe to more accurately estimate the details of the images in the depth map.This network runs on the dataset inside the sewer pipe and helps the robot comprehend the inside of the pipe environment.
لیست مقالات
لیست مقالات بایگانی شده
بررسی و شبیه سازی اضافه ولتاژهای صاعقه در نیروگاه خورشیدی برق خراسان و ارائه سیستم حفاظتی مناسب
هادی علی آبادی - بهزاد کرمانی
ساخت و مشخصه یابی حسگر گاز QCM با پوشش نیترات لانتانیوم برای آشکارسازی بخار اسید هیدروفلوئوریک
زهرا خوش بین - وحید غفاری نیا
Mapping Human Grasping to 3-Finger Grippers: A Deep Learning Perspective
Fatemeh Naeinian - Elnaz Balazadeh - Mehdi Tale Masouleh
Conserving Power Consumption in Elastic Optical Networks using Deep Learning
Fatemeh Dehrouyeh - Sina Tavakolian - Lotfollah Beygi
Floquet model of spatiotemporally modulated graphene-based structures
Mahsa Valizadeh - Leila Yousefi - MirFaez Miri
Safe Cooperative Control of Non-Holonomic Mobile Manipulators
Zahra Kashi - Nargess Sadeghzadeh-Nokhodberiz
طراحی و شبیه سازی جاذب شفاف فراماده تک لایه پهن باند مبتنی بر الگوی فرکتالی با پایداری زاویه ای بالا و غیر حساس به قطبش
سحر سوقی - حمید حیدر - محمدرضا هراتی - وحید نیری
Optimal Path Planning of Mobile Robots using IsoCost-Based Dynamic Programming
Fatemeh Alvankarian - Ahmad Kalhor - Mehdi Tale Masouleh
Insulation System Optimization in Dry-Type Transformer Using Finite Element Method
Shohreh Saberi - Mehdi Bigdeli - Davood Azizian
A Novel Model for Student's Mental Health Monitoring Based on Hard and Soft Data Fusion
Mohammad Fatahi - Masoud Alizadeh - Behzad Moshiri
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0