0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Depth Estimation in Monocular Images of Inside the Sewer Pipes for Navigation of Inspection Robots
نویسندگان :
Zeinab Maroufi
1
Alireza Hadi Hosseinabadi
2
Reza Askari moghadam
3
1- University of Tehran
2- University of Tehran
3- University of Tehran
کلمات کلیدی :
Depth،Estimation،Neural Network،Sewer Pipe
چکیده :
Estimating the depth of a scene from single monocular color images is a fundamental problem in image understanding. Depth estimation is a critical function for robotic tasks such as localization, mapping, and obstacle detection. Recent works based on the development of deep convolutional neural networks provide reliable results. Due to the low cost and relatively small size of monocular cameras, the performance of neural networks for depth estimation from single RGB image has increased significantly. Inspector robots move inside the sewer pipe in an ambiguous environment that has various contaminations and obstacles. As a result of understanding the environment inside the pipe and analyzing the images from the monocular camera, the robot can move more safely and perform the mission more effectively. This paper presents a new deep neural network, called SepiDepth-ASPP. Our approach uses the integration of ASPP and adaptive bins to extract strong global and local contextual features at multiple scales, and then translate them to higher resolutions for clearer depth maps. This network is specially designed for images inside the sewer pipe to more accurately estimate the details of the images in the depth map.This network runs on the dataset inside the sewer pipe and helps the robot comprehend the inside of the pipe environment.
لیست مقالات
لیست مقالات بایگانی شده
Model Predictive Control for a 3-DoF Suspended Cable Robot Based on Laguerre Functions
Shiva Khoshkam - Mohammad A. Khosravi - Rasul FesharakiFard
Efficient signal detection via compressive sensing in uplink massive MIMO systems
Soroush Mesforush Mashhad - Mojtaba Amiri - Ali Olfat
Stability Analysis for the Non-linear Model Predictive Control of a Flexible Joint Manipulator with Dynamics Uncertainties
Mohamadreza Satvati - Hossein Karimpour - Keivan Torabi - Mohammad Motaharifar
Active Data Fusion in Deep Neural Networks via Separation Index
Movahed Jamshidi - Ahmad Kalhor - Abdol-Hossein Vahabie
Sum Rate Maximization in STAR-RIS Assisted D2D Communications
Mohammad Reza Kavianinia - Mohammad Javad Emadi
Comparison of the MRT and ZF Precoding in Massive MIMO Systems from Energy Efficiency Viewpoint
Mahdi Nangir - Abdolrasoul Sakhaei Gharagezlou - Nima Imani
Dynamic State Estimation of Power System Using Gauss-Seidel Cubature Kalman Filter
Atiyeh Keshavarz-Mohammadiyan
A Modified Low Rank Learning Based on Iterative Nuclear Weighting in Ripplet Transform for Denoising MR Images
Nooshin Farhangian - Mansour Nejati Jahromi - Mahdi Nouri
Bit error rate improvement in optical camera communication based on RGB LED
Farzaneh Norouzi - Saeed Olyaee - Mehran Mehraban Rad
روشی نوین مبتنی بر سیمپلکسهای متوالی برای غلبه بر چالشهای حل پخش بار بهینه
فاطمه زاده محمدی - حسین شریف زاده
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2