0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Job Title Prediction from Tweets Using Word Embedding and Deep Neural Networks
نویسندگان :
Shayan Vassef
1
Ramin Toosi
2
Mohammad Ali Akhaee
3
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
کلمات کلیدی :
text classification،social media analysis،Job title prediction،Twitter analysis
چکیده :
The more social media take its place in our lives, the more important their analysis becomes and the more researchers’ attention is drawn to it. Studies contain various topics such as sentiment analysis, trend prediction, bot detection, etc. Here, for the first time, we propose a novel method to predict the job title of social media users. Twitter, a popular social media, is our target social media. We introduce a dataset consisting of 1314 samples, including users’ tweets and bios. The user's job title is found using Wikipedia crawling. The challenge of multiple job titles per user is handled using a semantic word embedding and clustering method. Then, a job prediction method based on a deep neural network and TF-IDF word embedding is introduced. We also take the advantage of hashtags and emojis in the tweets for job prediction. Results show that the job title of users in Twitter could be well predicted with 54\% accuracy in nine categories.
لیست مقالات
لیست مقالات بایگانی شده
Evaluating the Impact of Operation Scheduling Methods on Microgrid Reliability Using Monte Carlo Simulation
Mahsa Omri - Mohammad Jooshaki - Ali Abbaspour - Mahmud Fotuhi-Firuzabad
Nonvolatile Quaternary Pre-Charged MRAM Cell Design based on Emerging Technologies
Motahareh BahmanAbadi - Abdolah Amirany - Mohammad Hossein Moaiyeri
حفاظت تطبیقی ریزشبکهی DC با به کارگیری تبدیل فوریهی سریع و ماشین بردار پشتیبان
امیر داداشی - سید حسین (حسامالدین) صادقی
Type-2 fuzzy expert system for management of smart home with combining renewable resources
Ali Beheshtikhoo - Mahdi Pourgholi - Iman Khazaee
Performance Analysis of the Modified Flux-Coupling-Type SFCL in VSC-HVDC System
Mohammad Khakroei - Ashkan Mirzaei Rajeooni - Mahdi Rahimi Pirbasti - Hossein Heydari
Deep SqueezeNet Based Technique for Detection of High Impedance Arcing Faults in Electric Power Distribution Networks
Amin Mohammadi - Mohsen Jannati - Mohammadreza Shams
Image-Based Self-Localization Using Differential Observation Angle Based on Real-World Features
Seyed Mohammad Bagher Seyedin - Mahdi Goodarzi - Fereidoon Behnia
Study of Performance Characteristics of a Line-Start Synchronous Reluctance Motor Over its Synchronization Region
Ali Jamali-Fard - Mojtaba Mirsalim
An Active Inductor-Based Differential Ring VCO with Wide Tuning Range for UWB Applications
Mahdi Alijani - Mohammadmahdi Javanmardi - Vahid Khodadadi - Adib Abrishamifar
Compare of Machine Learning and Deep Learning Approaches for Human Activity Recognition
Babak Moradi - Mohammad Aghapour - Afshin Shirbandi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1