0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Partitioning-based Graph Signal Denoising via Heat Kernel Smoothing
نویسندگان :
Mohammadreza Fattahi
1
Hamid Saeedi-Sourck
2
Vahid Abootalebi
3
1- دانشگاه یزد
2- دانشگاه یزد
3- دانشگاه یزد
کلمات کلیدی :
Graph signal processing،denoising،partitioning،Fiedler’s theorem
چکیده :
Abstract—The objective of graph signal denoising is to extract a clean signal from a noisy dataset while maintaining the graph’s inherent structure. Dealing with large-scale graphs introduce significant computational complexities, urging us to explore low-complexity methods that leverage their potential decomposability. This study focuses on graph signal denoising using two techniques: heat kernel smoothing and Fiedler’s method for graph partitioning. Fiedler’s theorem divides the graph recursively based on the sign of the Fiedler vector, which corresponds to the second smallest eigenvalue of the graph Laplacian. Our findings demonstrate that parallelly applying heat kernel smoothing separately to each subgraph yields less computational complexity compared to its application to the entire graph. This improvement stems from the decomposability of subgraphs, effectively preventing kernel approximation issues on the primary graph. Additionally, we aggregate the denoised signals from different subgraphs into a unified denoised signal. We evaluate the effectiveness of our method across various graphs by comparing input and output signal-to-noise ratios, highlighting its performance relative to kernel estimation, especially on larger graphs.
لیست مقالات
لیست مقالات بایگانی شده
Open Circuit Fault Detection and Diagnosis for Seven-Level Hybrid Active Neutral Point Clamped (ANPC) Multilevel Inverter
Mobin Azimipanah - Mahyar Hassanifar - Yousef Neyshabouri
Spotting of a Particular Printed Word in Farsi Handwritten Forms Using Deep Learning
Mohammad jafar Gholami Kenari - Ehsanollah Kabir
Strategic Offering of a Virtual Power Plant in Energy Markets Under Contingency Conditions: A Hybrid Stochastic Robust Optimization Approach
Elahe Ghanaee - Morteza Rahimiyan
Brain Tumor Segmentation using Multimodal MRI and Convolutional Neural Network
Nazila Loghmani - Roqaie Moqadam - Armin Allahverdy
A Low-cost Waveguide Switch Using Glide-symmetric Holey Electromagnetic Band Gap Technology
Mohsen Shafeghati - Elham Sharifi moghaddam - Behzad Ahmadi
قرارگیری بهینه سطوح هوشمند قابل تنظیم مجدد برای مکان یابی فرستنده
مهدی گودرزی - فریدون بهنیا - امین آقاتبار رودباری
Modeling of dielectrophoretic single-stage continuous separation of Escherichia coli K38 in a microfluidic channel
Saeed Saedy - Navid Alaei Sheini - Shahrzad Ajabi
Controllerless SDN: A Novel Architecture to Improve Software-Defined Networks Security
Sayfollah Rohollahi - Siavash Khorsandi
بهبود بازه پویای حسگر گاز اکسید فلزی برای کاربرد در پایش ایمنی محیطهای صنعتی
سمانه محمدباغبان - وحید غفاری نیا
Integration of P2G and Renewables in Stochastic Day-ahead Electricity-Gas Scheduling
Mojtaba Choghaei - Mohammad Kazem Sheikh-El-Eslami
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2