0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Partitioning-based Graph Signal Denoising via Heat Kernel Smoothing
نویسندگان :
Mohammadreza Fattahi
1
Hamid Saeedi-Sourck
2
Vahid Abootalebi
3
1- دانشگاه یزد
2- دانشگاه یزد
3- دانشگاه یزد
کلمات کلیدی :
Graph signal processing،denoising،partitioning،Fiedler’s theorem
چکیده :
Abstract—The objective of graph signal denoising is to extract a clean signal from a noisy dataset while maintaining the graph’s inherent structure. Dealing with large-scale graphs introduce significant computational complexities, urging us to explore low-complexity methods that leverage their potential decomposability. This study focuses on graph signal denoising using two techniques: heat kernel smoothing and Fiedler’s method for graph partitioning. Fiedler’s theorem divides the graph recursively based on the sign of the Fiedler vector, which corresponds to the second smallest eigenvalue of the graph Laplacian. Our findings demonstrate that parallelly applying heat kernel smoothing separately to each subgraph yields less computational complexity compared to its application to the entire graph. This improvement stems from the decomposability of subgraphs, effectively preventing kernel approximation issues on the primary graph. Additionally, we aggregate the denoised signals from different subgraphs into a unified denoised signal. We evaluate the effectiveness of our method across various graphs by comparing input and output signal-to-noise ratios, highlighting its performance relative to kernel estimation, especially on larger graphs.
لیست مقالات
لیست مقالات بایگانی شده
کاربرد امواج فراصوت در ترومبولسیس لخته خون به عنوان درمان غیرتهاجمی
مریم بیات - شکراله کریمیان - اسفندیار مهرشاهی
Stator Windings Resistance Estimation Methods of In-Service Induction Motors-A Review
Moslem Geravandi - Hassan Moradi CheshmehBeigi
Improving the Reliability of Multicore Embedded Systems through an Evolutionary-based Task Scheduling Approach
Athena Abdi - Hamid R Zarandi
LSTM and Markov-Based Mobility Prediction for Multi-access Edge Computing
Hadi Ghavaminejad - Nasser Yazdani - Golboo Rashidi
Synergy of Deep Learning and Artificial Potential Field Methods for Robot Path Planning in the Presence of Static and Dynamic Obstacles
Mohammad Amin Basiri - Shirin Chehelgami - Erfan Ashtari - Mehdi Tale Masouleh - Ahmad Kalhor
Model Predictive Control for a 3-DoF Suspended Cable Robot Based on Laguerre Functions
Shiva Khoshkam - Mohammad A. Khosravi - Rasul FesharakiFard
تجزیه وابستگی با استفاده از Q-Learning محافظه کار
امیر زارعی - علیرضا خیاطیان - پیمان ستوده
طراحی یک کنترلکننده غیرخطی تطبیقی غیرمتمرکز برای تنظیم ولتاژ ریزشبکههای DC در حالت جزیرهای
سمیه بهرامی - فاطمه صفایی
Iranian stock market fluctuations: from social news to forecasting models
Maryam Sharifinia - Farzaneh Ghayour Baghbani
Effective Service Restoration in Electrical Distribution Networks Using a Bi-Stage Algorithm
Qasem Asadi - Amir Amini - Hamid Falaghi - Maryam Ramezani
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0