0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Brain Tumor Segmentation using Multimodal MRI and Convolutional Neural Network
نویسندگان :
Nazila Loghmani
1
Roqaie Moqadam
2
Armin Allahverdy
3
1- Northeastern University
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی مازندران
کلمات کلیدی :
Glioblastoma،Segmentation،Deep Learning،Convolutional Neural Network
چکیده :
Glioblastoma is the most common brain tumor with a high mortality rate. So, detecting the tumorous lesion and segmenting it into its subsets can be helpful to evaluate the grade of the tumor in tracking the therapeutic interventions. Moreover, image segmentation is commonly used for evaluating and visualizing the anatomy of brain tissue in MRI. On the other hand, the convolutional neural network is a network with a deep learning approach and directly learns from data without any feature extraction. In this study, we used a multimodal MRI database containing FLAR, T1 enhanced, and T2 modalities, and a convolutional neural network to segment tumors into whole tumor, core tumor, and necrotic tumor. The results showed accuracy with 85.41% for whole tumor, 90.11% for core tumor, and 79.75% for necrotic tumor. These results showed that using a convolutional neural network is reliable for brain tumor segmentation. Considering this approach used multimodal MRI, this segmentation could be separately done for each tissue.
لیست مقالات
لیست مقالات بایگانی شده
Optimal Path Planning and Control of a Hexarotor with Mass Uncertainty in the Presence of Dynamic Obstacles and Wind Using Sliding Mode and Adaptive PSO Algorithm
Nima Sina - Peyman Amiri - Mohammad Danesh
Adaptive synchronous switching of uncompensated open transmission lines Realizing the line’s Parameters, and the pre-arcing interval
Alireza Karimonnafs - Mehdi Vakilian
Deep Learning based Electrical Load Forecasting using Temporal Fusion Transformer and Trend-Seasonal Decomposition
Ehsan Saadipour-Hanzaie - Mohammad-Amin Pourmoosavi - Turaj Amraee
Autonomous, Bio-inspired vision-based navigation system for indoor flying using hybrid optical flow and stereopsis methods
Masoud Mohtadifar - Hadi Seyedarabi
Partitioning-based Graph Signal Denoising via Heat Kernel Smoothing
Mohammadreza Fattahi - Hamid Saeedi-Sourck - Vahid Abootalebi
A Cost-Effective Solution for Traffic Sign Recognition and Geographic Localization Using a Monocular Camera
Mohadeseh Atyabi - Fardin Ayar - Mahdi Javanmardi
Application of Max Flow- Min Cut Theory to find the best placement Of Electronic-based DC-PFCs for enhancing static security in MT-HVDC Meshed Grids
Mir Hamed Pour Mir Asghariyan - Jafar Milimonfared - Seyed Saeid Heidari Yazdi - Ali Haji Ali Biglo - Kumars Rouzbehi
Scalable Multipurpose Smart Indoor Lighting System for Wireless Sensor Networks
Atefesadat Seyedolhosseini - Reza Nemati - Hossein Maghsoumi - Shokrollah Karimian - Nasser Masoumi
A 23.4-31.9 GHz Tunable RF-MEMS Impedance Matching Network for 5G Power Amplifier
Fazel Ziraksaz - Alireza Hassanzadeh
Low-Cost Clock Distribution Network in Highly Compact Integrated Circuits Against Single Event Transients
Ehsan Borhani nia - Amir Mohammad Hoseini
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2