0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Brain Tumor Segmentation using Multimodal MRI and Convolutional Neural Network
نویسندگان :
Nazila Loghmani
1
Roqaie Moqadam
2
Armin Allahverdy
3
1- Northeastern University
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی مازندران
کلمات کلیدی :
Glioblastoma،Segmentation،Deep Learning،Convolutional Neural Network
چکیده :
Glioblastoma is the most common brain tumor with a high mortality rate. So, detecting the tumorous lesion and segmenting it into its subsets can be helpful to evaluate the grade of the tumor in tracking the therapeutic interventions. Moreover, image segmentation is commonly used for evaluating and visualizing the anatomy of brain tissue in MRI. On the other hand, the convolutional neural network is a network with a deep learning approach and directly learns from data without any feature extraction. In this study, we used a multimodal MRI database containing FLAR, T1 enhanced, and T2 modalities, and a convolutional neural network to segment tumors into whole tumor, core tumor, and necrotic tumor. The results showed accuracy with 85.41% for whole tumor, 90.11% for core tumor, and 79.75% for necrotic tumor. These results showed that using a convolutional neural network is reliable for brain tumor segmentation. Considering this approach used multimodal MRI, this segmentation could be separately done for each tissue.
لیست مقالات
لیست مقالات بایگانی شده
Analytical Model for Estimating the Range of Troposcatter Active Radar
Mahdi Shiri - Mohammadreza Edalatzadeh
جداسازی عروق در تصاویر شبکیه چشم با استفاده از یک روش آستانه گذاری وفقی مبتنی بر اطلاعات محلی و سرتاسری
زهرا نورانی آتشگاه - محمد آراسته - آیدا فولادی وندا
Vibration Analysis of a High-Speed Switched Reluctance Motor Considering Fast Demagnetization Voltage
Nasrin Majlesi - Amir Rashidi - Morteza Saghaian Nejad
مقایسه پارامترهای عملکردی کمپرسورهای 4:2 در تکنولوژی FinFET و GAA-NWFET
پگاه زکیان - راهبه نیارکی اصلی
A compact 5G MIMO antenna with reduced mutual coupling
Marziyeh Amiri - Ali Ghafoorzadeh-yazdi - Abbas-Ali Heidari
Optical Beam Switching using an Integrated Meta-Surface Device
Vahid Ghaffari - Leila Yousefi
Modeling of a low-noise amplifier with a recurrent neural network
Mostafa Noohi - Fatemeh Charoosaei - Ali Mirvakili - Sayed Alireza Sadrossadat
A 23.4-31.9 GHz Tunable RF-MEMS Impedance Matching Network for 5G Power Amplifier
Fazel Ziraksaz - Alireza Hassanzadeh
A Barrier Function Based Feedback Linearization Method for On-line Output Tracking Control of Non-minimum Phase Systems
Fatemeh Jahangiri - Ali Talebi - Mohammad Bagher Menhaj
Designing Of Type-2 Fuzzy Formation Controller For A Class Of Nonlinear Multiagent System Using JAYA Algorithm
Arvin Attar - Mohammad Ali Badamchizadeh - Sehraneh Ghaemi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1