0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Brain Tumor Segmentation using Multimodal MRI and Convolutional Neural Network
نویسندگان :
Nazila Loghmani
1
Roqaie Moqadam
2
Armin Allahverdy
3
1- Northeastern University
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی مازندران
کلمات کلیدی :
Glioblastoma،Segmentation،Deep Learning،Convolutional Neural Network
چکیده :
Glioblastoma is the most common brain tumor with a high mortality rate. So, detecting the tumorous lesion and segmenting it into its subsets can be helpful to evaluate the grade of the tumor in tracking the therapeutic interventions. Moreover, image segmentation is commonly used for evaluating and visualizing the anatomy of brain tissue in MRI. On the other hand, the convolutional neural network is a network with a deep learning approach and directly learns from data without any feature extraction. In this study, we used a multimodal MRI database containing FLAR, T1 enhanced, and T2 modalities, and a convolutional neural network to segment tumors into whole tumor, core tumor, and necrotic tumor. The results showed accuracy with 85.41% for whole tumor, 90.11% for core tumor, and 79.75% for necrotic tumor. These results showed that using a convolutional neural network is reliable for brain tumor segmentation. Considering this approach used multimodal MRI, this segmentation could be separately done for each tissue.
لیست مقالات
لیست مقالات بایگانی شده
Image Inpainting Using AutoEncoder and Guided Selection of Predicted Pixels
Mohammad Hossein Givkashi - Mahshid Hadipour - َArezoo PariZanganeh - Zahra Nabizadeh Shahre-Babak - Nader Karimi - Shadrokh Samavi
طراحی خودرمزگذار متغیر جهت تشخیص عیب در بیرینگهای غلتشی
مریم آهنگ - مهدی علیاری شورهدلی
Improving Wind Turbines Blades Damage detection by using YOLO BoF and BoS
Reza Mohammadi - Saeed Sharifian
Proposing an indirect distributed approach to apply SSSEP vibrational stimulation
SAHAR SADEGHI - Ali Maleki
Fabrication, Simulation and Modeling of a T-Shaped Coaxial Stub Resonator
Abolfazl Ebrahimpour - Sepehr Sahab - Javad Shokri Seyyedi - Younes Sahranavard - Gholamreza Moradi
Formation of Singular Multi-Agent Systems via a New Iterative Learning Control Approach
Ali Raddanipour - Masoud Shafiee
Using a Novel Connection Triangle as a Classifier to Discriminate between Different Faults in the Frequency Response Analysis
Mohammad Hamed Samimi
Scene Understanding in Pick-and-Place Tasks: Analyzing Transformations Between Initial and Final Scenes
Seraj Ghasemi - Hamed Hosseini - MohammadHossein Koosheshi - Mehdi Tale Masouleh - Ahmad Kalhor
Extended Phase Shift Control in Dual Active Bridge Converter Considering Magnetizing Inductance of Transformer
Masood Soleimanifard - Ali Yazdian Varjani
Development of Reflectarray Antennas With a Deflected Beam: An Approach Based on Artificial Neural Networks
Mahdieh Esmaeiliporzani - Zahra Atlasbaf
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4