0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Brain Tumor Segmentation using Multimodal MRI and Convolutional Neural Network
نویسندگان :
Nazila Loghmani
1
Roqaie Moqadam
2
Armin Allahverdy
3
1- Northeastern University
2- دانشگاه علوم پزشکی تهران
3- دانشگاه علوم پزشکی مازندران
کلمات کلیدی :
Glioblastoma،Segmentation،Deep Learning،Convolutional Neural Network
چکیده :
Glioblastoma is the most common brain tumor with a high mortality rate. So, detecting the tumorous lesion and segmenting it into its subsets can be helpful to evaluate the grade of the tumor in tracking the therapeutic interventions. Moreover, image segmentation is commonly used for evaluating and visualizing the anatomy of brain tissue in MRI. On the other hand, the convolutional neural network is a network with a deep learning approach and directly learns from data without any feature extraction. In this study, we used a multimodal MRI database containing FLAR, T1 enhanced, and T2 modalities, and a convolutional neural network to segment tumors into whole tumor, core tumor, and necrotic tumor. The results showed accuracy with 85.41% for whole tumor, 90.11% for core tumor, and 79.75% for necrotic tumor. These results showed that using a convolutional neural network is reliable for brain tumor segmentation. Considering this approach used multimodal MRI, this segmentation could be separately done for each tissue.
لیست مقالات
لیست مقالات بایگانی شده
ادغام حسگرهای رادار، لیدار و دوربین به منظور بهبود عملکرد در تشخیص اهداف برای کاربرد خودروهای خودران
سید مسعود معصومی زاده - محمد سجادی - طاها محقق - منصور نادرپور - صادق شاه سنایی - محمد علی مددی - زهرا کاوه وش - علی فتوت احمدی
Battery Sizing for energy management of islanded Microgrid considering the impact of discharge duration on Lead-Acid Battery effective capacity
Mehrdad Bagheri Sanjareh - Mohammad Hassan Nazari - Narges Sadat Ghiasi - Seyyed Mohammad Sadegh Ghiasi - Seyed Hoseein Hosseinian
A New Unsupervised Feature Learning Method for Object Recognition using Prior-Knowledge Data
Ashkan Farrokhi - Hadi Seyedarabi
Optimal Receiver Placement in Distributed Passive Sensor Networks: A DRL Approach
Hossein Nikaein - Mohammad Reza Jabbari - Maedeh Kadkhodaie Elyaderani - Saeed Gazor
Robust IDA-PBC for a Spatial Underactuated Cable Driven Robot with Bounded Inputs
Mohammad Reza Jafari Harandi - S. Ahmad Khalilpour - Hamid Taghirad
An Integrated Technical Analysis and Machine Learning Trading Model for Noisy and Volatile Financial Markets
Arvin Esfandiari - Ali Doustmohammadi
Digitizing Analog ECGs: A Deep Learning Pipeline for Converting Historical Records into High-Quality Digital Signals
Sahar Askari - Somayeh Afrasiabi
Goodbye Bitcoin: A general framework for migrating to quantum-secure cryptocurrencies
Saeed Banaeian Far - Azadeh Imani Rad - Maryam Rajabzadeh Asaar
بهبودی بر مساله تشخیص اشیا برجسته درتصاویر مبتنی بر یادگیری عمیق
مهران طاهری - محمد صادق هل فروش - کامران کاظمی
High-Resolution Remote Sensing Image Captioning Based on Structured Attention and SAM Network
Yassin Riyazi - Seyyed Mostafa Sadjadi - Abbas Zohrevand - Reshad Hosseini
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2