0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Implementation of an Optimized Deep Learning Model to Assess Pediatric Sleep Apnea Severity Using SpO2 Signals on Resource-Limited Microcontrollers
نویسندگان :
Erfan Mortazavi
1
Hanieh Mohammadi
2
Bahram Tarvirdizadeh
3
Khalil Alipour
4
Mohammad Ghamari
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- California Polytechnic State University
کلمات کلیدی :
Sleep apnea-hypopnea (SAH)،Blood oxygen saturation (SpO2)،Convolutional neural network (CNN)،Long short-term memory (LSTM)،Attention،Apnea–hypopnea index (AHI)،Microcontroller
چکیده :
Accurately diagnosing pediatric sleep apnea-hypopnea (SAH) is a complex task in pediatric healthcare. Traditional methods like polysomnography (PSG) test, though effective, can be uncomfortable and impractical for children. This study explores a less invasive approach using deep learning to analyze blood oxygen saturation (SpO2) signals. A total of 844 SpO2 signals from the CHAT dataset were utilized, with the data split into 60% for training, 30% for testing, and 10% for validation to train a convolutional neural network (CNN)-long short-term memory (LSTM)-Attention model. The model achieved a kappa score of 0.62 and a four-class accuracy of 74.91% in estimating the apnea-hypopnea index (AHI) and classifying sleep apnea severity. The primary challenge was deploying the model on the resource-constrained STM32H743IIT6 microcontroller. TensorFlow toolkit optimization techniques were implemented to minimize model size and resource usage while preserving satisfactory accuracy, despite the microcontroller's sufficient 1MB data RAM. Each technique was evaluated in memory-constrained environments, leading to post-quantization deployment. The best optimized model maintained an accuracy of 73.63% and a kappa score of 0.60, demonstrating the feasibility of portable, non-invasive diagnostic tools.
لیست مقالات
لیست مقالات بایگانی شده
Analysis of the DC Bias Effects on the Transformer Vibration Using a Multi-field Coupling Model
Amir Esmaeili Nezhad - Mohammad Hamed Samimi
A 0.5-V Ultra-Low-Power Low-Pass-filter with Low Noise for ECG detection system
Yasin Heydarzadeh - Mehran Khanehbeygi - Sajad Sohrabian - Ziaddin Daie Koozehkanani
Partial Image Encryption of Faces Based on Chaotic Maps and Elliptic Curve Cryptography
Ali Soleymani - Md Jan Nordin
بررسی حفظ همراستایی در سامانههای مخابرات نوری فضای آزاد
مهدی زندی آتشبار - اصغر غلامی - فروغالسادات طباطبا
A high speed method for features extraction in face recognition systems
Hosein Khorami - Hadishahriar Shahhoseini
Low Complexity Single-Snapshot DOA Estimation Using Adaptive Filtering
Mojtaba Amiri - Mohammadreza Nargesi - Ali Olfat
A Low-profile Interdigital Diplexer for LEO Satellites Applications
Mojtaba Fallahzadeh - Behzad Ahmadi - Ali Kheirdoost
Ultra-Low Power Current-Mode ASK Demodulator for Contactless Smart Cards
Somayeh Yousefi - Mohsen Jalali
Real-Time Prediction of Lower Limb AngularTrajectories Using an Optimized LSTM Model withMarkerless Motion Capture
Amirhossein Jafari - Hamed Jalaly Bidgoly
A new LDO regulator with adaptive PSR improvement under wide load current range and fast load transient response
Mohammad Ahmadi - Emad Ebrahimi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4