0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Implementation of an Optimized Deep Learning Model to Assess Pediatric Sleep Apnea Severity Using SpO2 Signals on Resource-Limited Microcontrollers
نویسندگان :
Erfan Mortazavi
1
Hanieh Mohammadi
2
Bahram Tarvirdizadeh
3
Khalil Alipour
4
Mohammad Ghamari
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- California Polytechnic State University
کلمات کلیدی :
Sleep apnea-hypopnea (SAH)،Blood oxygen saturation (SpO2)،Convolutional neural network (CNN)،Long short-term memory (LSTM)،Attention،Apnea–hypopnea index (AHI)،Microcontroller
چکیده :
Accurately diagnosing pediatric sleep apnea-hypopnea (SAH) is a complex task in pediatric healthcare. Traditional methods like polysomnography (PSG) test, though effective, can be uncomfortable and impractical for children. This study explores a less invasive approach using deep learning to analyze blood oxygen saturation (SpO2) signals. A total of 844 SpO2 signals from the CHAT dataset were utilized, with the data split into 60% for training, 30% for testing, and 10% for validation to train a convolutional neural network (CNN)-long short-term memory (LSTM)-Attention model. The model achieved a kappa score of 0.62 and a four-class accuracy of 74.91% in estimating the apnea-hypopnea index (AHI) and classifying sleep apnea severity. The primary challenge was deploying the model on the resource-constrained STM32H743IIT6 microcontroller. TensorFlow toolkit optimization techniques were implemented to minimize model size and resource usage while preserving satisfactory accuracy, despite the microcontroller's sufficient 1MB data RAM. Each technique was evaluated in memory-constrained environments, leading to post-quantization deployment. The best optimized model maintained an accuracy of 73.63% and a kappa score of 0.60, demonstrating the feasibility of portable, non-invasive diagnostic tools.
لیست مقالات
لیست مقالات بایگانی شده
Application of Artificial Neural Network on Diagnosing Location and Extent of Disk Space Variations in Transformer Windings Using Frequency Response Analysis
Reza Behkam - Hossein Karami - Mahdi Salay Naderi - Gevork Gharehpetian
FGM Copula based Analysis of Outage Probability for Wireless Three-User Multiple Access Channel with Correlated Channel Coefficients
Mona Sadat Mohsenzadeh - Ghosheh Abed Hodtani
Identification of autism spectrum disorder based on combined analysis of structural and functional connectivity
Samane Pirmoradian - Farzaneh Shayegh - Jalal Zahabi
E-RESO: An Enhanced Time Redundancy-based Error Detection Approach for Arithmetic Operations
Sina Shahoveisi - Athena Abdi
Optimization and Analysis of Transformer Hot Spot Temperature Under Harmonic Conditions with Different Windings
Mehran Nemati - Hamed Karimi - Alireza Siadatan - Maryam Sepehrinour
Design and Simulation of a Novel High Sensitive MEMS Microphone Based On a Spring-Supported Circular Diaphragm
Mehdi Pazhooh - Ebrahim Abbaspour-Sani
تحلیل عدم تعادل جریان سه فاز شبکه فشارضعیف توزیع در پی قطع هادی نول متصل به ترانسفورماتور با استفاده از مولفههای متقارن
احمد صالحی دوبخشری
Transfer Learning Based Method for Human Activity Recognition
Saeedeh Zebhi - Smt Almodarresi - Vahid Abootalebi
Displacement Estimation for Ultrasound Elastography based on a Robust Uniform Stretching Method
Zahra Hosseini - Ali Khadem - Mohammadreza Hassannejad Bibalan
A Novel PM-Assisted Linear Switched Reluctance Motor
Matin Vatani - Mojtaba Mirsalim - Javad Shokrollahi Moghani
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1