0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Implementation of an Optimized Deep Learning Model to Assess Pediatric Sleep Apnea Severity Using SpO2 Signals on Resource-Limited Microcontrollers
نویسندگان :
Erfan Mortazavi
1
Hanieh Mohammadi
2
Bahram Tarvirdizadeh
3
Khalil Alipour
4
Mohammad Ghamari
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- California Polytechnic State University
کلمات کلیدی :
Sleep apnea-hypopnea (SAH)،Blood oxygen saturation (SpO2)،Convolutional neural network (CNN)،Long short-term memory (LSTM)،Attention،Apnea–hypopnea index (AHI)،Microcontroller
چکیده :
Accurately diagnosing pediatric sleep apnea-hypopnea (SAH) is a complex task in pediatric healthcare. Traditional methods like polysomnography (PSG) test, though effective, can be uncomfortable and impractical for children. This study explores a less invasive approach using deep learning to analyze blood oxygen saturation (SpO2) signals. A total of 844 SpO2 signals from the CHAT dataset were utilized, with the data split into 60% for training, 30% for testing, and 10% for validation to train a convolutional neural network (CNN)-long short-term memory (LSTM)-Attention model. The model achieved a kappa score of 0.62 and a four-class accuracy of 74.91% in estimating the apnea-hypopnea index (AHI) and classifying sleep apnea severity. The primary challenge was deploying the model on the resource-constrained STM32H743IIT6 microcontroller. TensorFlow toolkit optimization techniques were implemented to minimize model size and resource usage while preserving satisfactory accuracy, despite the microcontroller's sufficient 1MB data RAM. Each technique was evaluated in memory-constrained environments, leading to post-quantization deployment. The best optimized model maintained an accuracy of 73.63% and a kappa score of 0.60, demonstrating the feasibility of portable, non-invasive diagnostic tools.
لیست مقالات
لیست مقالات بایگانی شده
A 20W High Gain Power Amplifier
Hamid Taleb-Alhagh-Nia - Reza Rezaei Siahrood - Hamed Sajadinia
Synergizing ISAC and OTFS in a Non-GB-OMA Downlink Framework
Ghasem Saeidi - Hamid Saeedi-sourck
An LMI-based Robust Fuzzy Controller for Blood Glucose Regulation in Type 1 Diabetes
Mohammadreza Ganji Arjenaki - Mahdi Pourgholi
Improved Stability and Controller Design Criteria for 2- or n-dimensional Differential-Algebraic-Equation Systems via LMI Approach
Abdolah RoshanaeeDeh - Masoud Shafiee - Hajar Atrianfar
Coherent Direction of Arrival Estimation using Multiple Toeplitz Space Time Spatial Smoothing
Sepehr Kouzegaran - MASOUMEH AZGHANI
Differentiating Brain Connectivity Networks in ADHD and Normal Children using EEG
Roqaie Moqadam - Nazila Loghmani - Alireza Khorrami Moghaddam - Armin Allahverdy
Efficient NVIS HF Hinged Half-Loop Vehicular Antenna Using Modal Analysis
Nasser Haghighat - Javad Nourinia - Changiz Ghobadi - Keyhan Hosseini - Farzad Alizadeh - Bahman Mohammadi
Connective Reconstruction-based Novelty Detection
Seyyed Morteza Hashemi - Parvaneh Aliniya - Parvin Razzaghi
Modeling, estimation, and model predictive control for Covid-19 pandemic with finite security duration vaccine
Abolfazl Delavar - Reza Rahimi Baghbadorani
Improving Wind Turbines Blades Damage detection by using YOLO BoF and BoS
Reza Mohammadi - Saeed Sharifian
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2