0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Applying Parameter-Oriented Learning to Identify Statistical EEG Features Associated with Depression
نویسندگان :
Sara Bargi Barkouk
1
Melika Changizi
2
Mahdi Zolfagharzadeh Kermani
3
Ali Asadi Zeidabadi
4
1- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
2- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
3- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
4- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
کلمات کلیدی :
computational parameters،depression،detection system،electroencephalogram،statistical features
چکیده :
Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex neurophysiological basis. Identifying unique patterns of brain activity associated with MDD, with a special focus on electroencephalography (EEG), enables the ability to identify mental disorders by increasing the understanding of functional brain mechanisms. The present study introduces an innovative approach to design a depression detection system based on parameter-oriented learning. This approach results in developing a detection system using statistical features extracted from EEG signals. For this purpose, the processing unit of the system was first defined as a combination of calculation parameters, including long window duration, short window duration, and the temporal overlap percentage between periods, and then the measurement of statistical features extracted from the EEG signal was optimized based on these parameters. The best results were calculated using the five optimum features, which were related to four channels, along with the use of the K-Nearest Neighbors (K-NN) classifier, which resulted in obtaining the accuracy, F1-score, and area under curve (AUC) as 95.85%, 95.40%, and 95.78%, respectively.
لیست مقالات
لیست مقالات بایگانی شده
A New Approach to Determine Maximum Allowable Penetration level of LSPVPPs Considering Transient Angle Stability
Siavash Yari - Hamid Khoshkhoo
ساخت و مشخصه یابی حسگر گاز مونوکسیدکربن مبتنی بر هتروساختار p-n نیترید کربن گرافیتی متخلخل-اکسید مس
سمیرا جوانمردی - شیرین نصر اصفهانی - محمد حسین شیخی
Sensitivity Analysis of Power Production and Efficiency in Shahid Mofateh Hamedan Power Plant: A Comparative Study of Operational Indicators
Mahdi Aliyari-Shoorehdeli - Aryan Isapour
A Novel CNN-Based FSK Demodulator With Efficient FPGA Implementation
AmirHossein Sadough - Sina Rezaeeahvanouee
Machine Learning Approach for Retrieval of Complex Permittivity in Cavity Resonators
Kianoosh Kazemi - Gholamreza Moradi
Non-homogeneous interference suppression in OFDM array radars using direct data domain approach
Sima Shariatmadari
Helmet Microwave Array Applicator for Deep-Seated Brain Tumor Hyperthermia
Mohammad Moeini Arani - Mohammad Javad Hajiahmadi - Reza Faraji-Dana
Application of Max Flow- Min Cut Theory to find the best placement Of Electronic-based DC-PFCs for enhancing static security in MT-HVDC Meshed Grids
Mir Hamed Pour Mir Asghariyan - Jafar Milimonfared - Seyed Saeid Heidari Yazdi - Ali Haji Ali Biglo - Kumars Rouzbehi
Deception Attack Detection and Resilient Control in Platoon of Smart Vehicles
Hassan Mokari - Elnaz Firouzmand - Iman Sharifi - Ali Doustmohammadi
انتخاب آنتن در رادارهای چندورودی-چندخروجی با رویکرد یادگیری بانظارت در شبکههای عصبی کانولوشنی عمیق
مرضیه سادات میررفیع - ندا فرجی - ایاز قربانی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3