0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Applying Parameter-Oriented Learning to Identify Statistical EEG Features Associated with Depression
نویسندگان :
Sara Bargi Barkouk
1
Melika Changizi
2
Mahdi Zolfagharzadeh Kermani
3
Ali Asadi Zeidabadi
4
1- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
2- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
3- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
4- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
کلمات کلیدی :
computational parameters،depression،detection system،electroencephalogram،statistical features
چکیده :
Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex neurophysiological basis. Identifying unique patterns of brain activity associated with MDD, with a special focus on electroencephalography (EEG), enables the ability to identify mental disorders by increasing the understanding of functional brain mechanisms. The present study introduces an innovative approach to design a depression detection system based on parameter-oriented learning. This approach results in developing a detection system using statistical features extracted from EEG signals. For this purpose, the processing unit of the system was first defined as a combination of calculation parameters, including long window duration, short window duration, and the temporal overlap percentage between periods, and then the measurement of statistical features extracted from the EEG signal was optimized based on these parameters. The best results were calculated using the five optimum features, which were related to four channels, along with the use of the K-Nearest Neighbors (K-NN) classifier, which resulted in obtaining the accuracy, F1-score, and area under curve (AUC) as 95.85%, 95.40%, and 95.78%, respectively.
لیست مقالات
لیست مقالات بایگانی شده
Using a Novel Connection Triangle as a Classifier to Discriminate between Different Faults in the Frequency Response Analysis
Mohammad Hamed Samimi
3D Microwave Imaging inside PEMC Cavity Using Combined-Norm Regularization Term and Modified CG Algorithm
Omid Babazadeh - Hassan Nasseri
Cloudy: A Pythonic Cloud Simulator
Ahmad Siavashi - Mahmoud Momtazpour
Family of Multifunctional Controllable Converters for Grid, Battery, and PV-Powered EV Charging Station Applications
Homayon Soltani Gohari - Amir Safaeinasab - Karim Abbaszadeh
Displacement Estimation for Ultrasound Elastography based on a Robust Uniform Stretching Method
Zahra Hosseini - Ali Khadem - Mohammadreza Hassannejad Bibalan
ارائه روشی مبتنی بر دایجسترای پویا جهت مسیریابی بهینه در شبکه ترافیک شهری
طه واجدسمیعی - منیره عبدوس
A New Method Based on Emprical Wavelet Transform in Order to Detect Current Transformer Saturation in Distance Relay
Amir Ali Ahmadi Pishkohi - Seyed Amir Hosseini - Behrooz Taheri
A Novel Estimation Law for Impedance-Controlled Bilateral Teleoperation to Enhance Human-Environment Interaction
Mobina Kameli - Mohammad Motaharifar - Negin Sayyaf
تولید ریزداپلر راداری بدن انسان با استفاده از آموزش شبکه مولد متقابل کانولوشنال عمیق
مهدی استوان - صادق صمدی - علیرضا کاظمی
TID-based PSS2B to Overcome LFO Issue in Multi-machine Power Systems
Javad Morsali
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0