0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Applying Parameter-Oriented Learning to Identify Statistical EEG Features Associated with Depression
نویسندگان :
Sara Bargi Barkouk
1
Melika Changizi
2
Mahdi Zolfagharzadeh Kermani
3
Ali Asadi Zeidabadi
4
1- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
2- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
3- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
4- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
کلمات کلیدی :
computational parameters،depression،detection system،electroencephalogram،statistical features
چکیده :
Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex neurophysiological basis. Identifying unique patterns of brain activity associated with MDD, with a special focus on electroencephalography (EEG), enables the ability to identify mental disorders by increasing the understanding of functional brain mechanisms. The present study introduces an innovative approach to design a depression detection system based on parameter-oriented learning. This approach results in developing a detection system using statistical features extracted from EEG signals. For this purpose, the processing unit of the system was first defined as a combination of calculation parameters, including long window duration, short window duration, and the temporal overlap percentage between periods, and then the measurement of statistical features extracted from the EEG signal was optimized based on these parameters. The best results were calculated using the five optimum features, which were related to four channels, along with the use of the K-Nearest Neighbors (K-NN) classifier, which resulted in obtaining the accuracy, F1-score, and area under curve (AUC) as 95.85%, 95.40%, and 95.78%, respectively.
لیست مقالات
لیست مقالات بایگانی شده
Low power SRAM using an optimal number of split bit lines and single-ended sensing
Mahdie Nazemian - Sayed Masoud Sayedi
Multi-Attribute Decision-Making Methods to a Cloud Service Providing Selection
Amirhossein Shahbakhsh razavi - Kiumars Javan - Mehdi Zaferanieh - Somayeh Sobati-Moghadam
Ultra-Low-Latency QCA Adder Design Using an Innovative Carry Generator
Mohammad Mahdi Cheraghi - Reza Omidi - Ali Azarpeyvand
Microgrid Damping Improvement Using High-Pass Filter-Based Virtual Synchronous Generator
Shayan Zaimi - Ashkan Moradi Naserkhani - Sharara Rehimi - Amin Karimi - Rahmatollah Mirzaei - Hassan Bevrani
Robust Control System Design for an Industrial Heavy Duty Gas Turbine under Network-Induced Imperfections
Nasim Ensanseft - Ali Chaibakhsh
(Room Temperature Chemiresistor H2S Gas Sensor based on ZnS/PbS Core-Shell Quantum Dots(CSQDs
Mojtaba Azimi - Ali Rostami
Analysis of the RCS of Luneburg Reflector in Bistatic Mode
Mohammad Amin Abdollahi - Gholamreza Moradi
A Single-Fed Circularly-Polarized Elliptical Slot Antenna for S-Band applications
Sina Rezaee - Mahdi Janforooz - Behnam Rasoulpour
بهبود بازدهی انرژی در اینترنت اشیاء باند باریک با وفقیسازی لینک به کمک یادگیری عمیق
سمانه امیریان - محمدعلی سبقتی
High Performance and Low Power Spintronic Binarized Neural Network Hardware Accelerator
Milad Tanavardi Nasab - Arefe Amirany - Mohammad Hossein Moaiyeri - Kian Jafari
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0