0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Applying Parameter-Oriented Learning to Identify Statistical EEG Features Associated with Depression
نویسندگان :
Sara Bargi Barkouk
1
Melika Changizi
2
Mahdi Zolfagharzadeh Kermani
3
Ali Asadi Zeidabadi
4
1- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
2- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
3- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
4- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
کلمات کلیدی :
computational parameters،depression،detection system،electroencephalogram،statistical features
چکیده :
Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex neurophysiological basis. Identifying unique patterns of brain activity associated with MDD, with a special focus on electroencephalography (EEG), enables the ability to identify mental disorders by increasing the understanding of functional brain mechanisms. The present study introduces an innovative approach to design a depression detection system based on parameter-oriented learning. This approach results in developing a detection system using statistical features extracted from EEG signals. For this purpose, the processing unit of the system was first defined as a combination of calculation parameters, including long window duration, short window duration, and the temporal overlap percentage between periods, and then the measurement of statistical features extracted from the EEG signal was optimized based on these parameters. The best results were calculated using the five optimum features, which were related to four channels, along with the use of the K-Nearest Neighbors (K-NN) classifier, which resulted in obtaining the accuracy, F1-score, and area under curve (AUC) as 95.85%, 95.40%, and 95.78%, respectively.
لیست مقالات
لیست مقالات بایگانی شده
Temperature Prediction of Lithium-Ion Batteries for Thermal Management Systems Using Graph Convolutional Networks
Sepehr Ghalebi - Elaheh Sadat Ahmadi Mousavi - Farzaneh Abdollahi - Farschad Torabi
مدل سازی فشرده و شبیه سازی گذار عایق به هادی در افزاره مات مبتنی بر VO2
پرناز عباسی - مجید شالچیان
Optimizing Dual IMU Sensor Placement for Gait Phase Detection with LSTM Models
Mahya Abedi - Zolfa Anvari - Hamed Ghafarirad - Mohammad Zareinejad
یک روش مستقل از پارامترهای خطا بهمنظور تشخیص، دستهبندی و تعیین سکشن خطا در سیستم انتقال چند ترمیناله بر اساس تبدیل موجک گسسته
احسان اکبری - عبدالرضا شیخ الاسلامی
ZnO-based Acoustofluidics: Droplet-based Particle Manipulation
Sara Abbasi - Behdad Barahimi - Sara Darbari - Mohammad Kazem Moravvej-Farshi - Mohammad Zabetian
بهینهسازی مبدلDC-DC منبع امپدانسی مبتنی بر ترانسفورماتور ایزوله گالوانیکی با کاهش تعداد سوئیچها
علی سلیمانی - رضا قاضی
Design and Analysis of Three-Step Cyclic Vernier Time-to-Digital Converter
ُSara Mansouri - Hamidreza Rezaee-Dehsorkh - Nassim Ravanshad
Effective Service Restoration in Electrical Distribution Networks Using a Bi-Stage Algorithm
Qasem Asadi - Amir Amini - Hamid Falaghi - Maryam Ramezani
A Two Stage Low Power 0.73-4.4 GHz LNA Using Current Reuse and Noise Reduction Techniques
Sajjad Shojaei Baghini - Seyed-Ali Samareh-TaheriNasab - Samad Sheikhaei
Temporary Goal Method: A Solution for the Problem of Getting Stuck in Motion Planning Algorithms
Danial Khan mohamad zade - Samaneh Hosseini Semnani
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4