0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Applying Parameter-Oriented Learning to Identify Statistical EEG Features Associated with Depression
نویسندگان :
Sara Bargi Barkouk
1
Melika Changizi
2
Mahdi Zolfagharzadeh Kermani
3
Ali Asadi Zeidabadi
4
1- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
2- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
3- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
4- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
کلمات کلیدی :
computational parameters،depression،detection system،electroencephalogram،statistical features
چکیده :
Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex neurophysiological basis. Identifying unique patterns of brain activity associated with MDD, with a special focus on electroencephalography (EEG), enables the ability to identify mental disorders by increasing the understanding of functional brain mechanisms. The present study introduces an innovative approach to design a depression detection system based on parameter-oriented learning. This approach results in developing a detection system using statistical features extracted from EEG signals. For this purpose, the processing unit of the system was first defined as a combination of calculation parameters, including long window duration, short window duration, and the temporal overlap percentage between periods, and then the measurement of statistical features extracted from the EEG signal was optimized based on these parameters. The best results were calculated using the five optimum features, which were related to four channels, along with the use of the K-Nearest Neighbors (K-NN) classifier, which resulted in obtaining the accuracy, F1-score, and area under curve (AUC) as 95.85%, 95.40%, and 95.78%, respectively.
لیست مقالات
لیست مقالات بایگانی شده
A Closed RF Wave-Applicator to Study the Biological Effects of Mobile Communication Systems
SeyedMilad Miri - Karim Mohammadpour-Aghdam
Design of a highly efficient photoconductive terahertz modulator enhanced by photonic crystal resonant cavity
Faramarz Alihosseini - Zahra Heshmatpanah - Hesam Zandi
یادگیری متری عمیق جهت شناسایی افراد
امیرعلی نسیمی - مهران صفایانی - مائده احمدی - عبدالرضا میرزائی
Net Load Forecasting of Household Prosumers Considering Deep Reinforcement Learning
Behzad Motallebi Azar - Rasool Kazemzadeh - Morteza Zare Oskouei - Behnam Mohammadi-Ivatloo
Wide-band Cloaking of Finite Length PEC Cylindrical Objects under Oblique Incidence using Multi-Layer Mantle Cloak
Alireza Moosaei - Mohammad Hasan Neshati
انتخاب آنتن در رادارهای چندورودی-چندخروجی با رویکرد یادگیری بانظارت در شبکههای عصبی کانولوشنی عمیق
مرضیه سادات میررفیع - ندا فرجی - ایاز قربانی
Single-Channel Recursive Speech Separation with Unknown Speaker Count by Mask Estimation
Hadi Alizadeh - Rahil Mahdian Toroghi - Hassan Zareian
Entanglement-Assisted Classical-Quantum Multiple Access Wiretap Channel: One-shot Achievable Rate Region
Hadi Aghaee - Bahareh Akhbari
Deep Learning Meets Explainable AI: A Robust Framework for X-Ray Fracture Detection
Ali Tamizifar - Shakiba Berenjkoub - Mina Amiri
A Thin-Film SIS Solar Cell Based on Distributed Silicon Nanoparticles
Mohammad Ali Shameli - Sayyed Reza Mirnaziry - Leila Yousefi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4