0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Applying Parameter-Oriented Learning to Identify Statistical EEG Features Associated with Depression
نویسندگان :
Sara Bargi Barkouk
1
Melika Changizi
2
Mahdi Zolfagharzadeh Kermani
3
Ali Asadi Zeidabadi
4
1- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
2- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
3- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
4- دانشگاه ازاد اسلامی واحد علوم و تحقیقات
کلمات کلیدی :
computational parameters،depression،detection system،electroencephalogram،statistical features
چکیده :
Major Depressive Disorder (MDD) is a prevalent mental health condition with a complex neurophysiological basis. Identifying unique patterns of brain activity associated with MDD, with a special focus on electroencephalography (EEG), enables the ability to identify mental disorders by increasing the understanding of functional brain mechanisms. The present study introduces an innovative approach to design a depression detection system based on parameter-oriented learning. This approach results in developing a detection system using statistical features extracted from EEG signals. For this purpose, the processing unit of the system was first defined as a combination of calculation parameters, including long window duration, short window duration, and the temporal overlap percentage between periods, and then the measurement of statistical features extracted from the EEG signal was optimized based on these parameters. The best results were calculated using the five optimum features, which were related to four channels, along with the use of the K-Nearest Neighbors (K-NN) classifier, which resulted in obtaining the accuracy, F1-score, and area under curve (AUC) as 95.85%, 95.40%, and 95.78%, respectively.
لیست مقالات
لیست مقالات بایگانی شده
Primary Frequency Support in Clustered Unit Commitment with Battery Energy Storage and High Renewable Penetration
Abbas Abdollahi-Veshvaee - Turaj Amraee
A 2D Geometry Based Grasping Pose Generation Algorithm for a Two-finger Robot Hand
Arash Akbari - Arman Akbari - Mehdi Tale Masouleh
Applying Parameter-Oriented Learning to Identify Statistical EEG Features Associated with Depression
Sara Bargi Barkouk - Melika Changizi - Mahdi Zolfagharzadeh Kermani - Ali Asadi Zeidabadi
Multi-Bit Memory Architecture for In-memory Computing using In-Plane MTJ
Milad Ashtari Gargari - Nima Eslami - Mohammad Hossein Moaiyeri
امنیت سایبری در مواجه با تزریق اطلاعات نادرست به سیستم قدرت هوشمند و ارائه راهکار مقابله
مهدی جمشیدی آفارانی - مهرداد عابدی
Optimal Path Planning of Mobile Robots using IsoCost-Based Dynamic Programming
Fatemeh Alvankarian - Ahmad Kalhor - Mehdi Tale Masouleh
Machine Learning Approach for Retrieval of Complex Permittivity in Cavity Resonators
Kianoosh Kazemi - Gholamreza Moradi
Design of a High-Efficiency Balanced Power Amplifier with 68% Fractional Bandwidth
Fatemeh Mohabati - Marzieh Chegini - Mahmoud Kamarei
مرتب سازی اسپایک های عصبی با استخراج ویژگی مبتنی بر شبکه عمیق خود رمزگذار
شیدا معجونی - حسین حسینی نژاد محبتی - امین نیک انجام
Enhancing Fetal Brain MRI Segmentation with Adaptive Attention Mechanisms and Residual Blocks
Nazanin Valaee - Vajiheh Sabeti
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4