0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Area-Efficient Partially-Pipelined Architecture for Fast-SSC Decoding of Polar Codes
نویسندگان :
Mehdi Saeidi
1
Matin Hashemi
2
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
کلمات کلیدی :
Polar Code،Hardware،Partially-Pipelined Architecture،Area Reduction
چکیده :
We propose a method to reduce the area of the state-of-the-art fully-unrolled partially-pipelined architecture for Fast Simplified Successive-Cancellation (Fast-SSC) decoding of polar codes. In state-of-the-art partially-pipelined architecture, compute units are idle during many of the clock cycles. The proposed solution alleviates some of this inefficiency. As a result, without degrading throughput or latency, area is reduced. For instance, compared to non-pipelined method, the proposed area-efficient partially-pipelined architecture reduces the area by a factor of 9.5x at initiation interval I = 20, while the state-of-the-art partially-pipelined architecture reduces the area by a factor of 7.4x. Hence, area efficiency is increased by a factor of about 1.28x in this case.
لیست مقالات
لیست مقالات بایگانی شده
Partitioning-based Graph Signal Denoising via Heat Kernel Smoothing
Mohammadreza Fattahi - Hamid Saeedi-Sourck - Vahid Abootalebi
Design and Simulation of Axial Flux Permanent Magnet Electrical Machine for Electric Vehicles Application
Hamid Radmanesh - Reza Sharifi
Optimal Bidding Strategy with Smooth Budget Delivery in Online Advertising
Mohammad Afzali - Keykhosro Khosravani - Maryam Babazadeh
Fault tolerant control design for linear systems based on cubic observers
Mahsa Hasanshahi - Malihe Maghfoori Farsangi - Elham Amini Boroujeni
Sum-Rate Maximization for NOMA-Based Networks with D2D Communications using Matching Theory
َAlireza Gholamrezaee - Hamid Farrokhi - Javad Zeraatkar Moqaddam
Gray Box High-Frequency Modeling of Transformer using Particle Swarm Optimization
Mehdi Shamsodini Lori - Mohammad Hamed Samimi - Jawad Faiz
A New Unsupervised Feature Learning Method for Object Recognition using Prior-Knowledge Data
Ashkan Farrokhi - Hadi Seyedarabi
Energy-aware Multiple Access Using Deep Reinforcement Learning
Hamid Reza Mazandarani - Siavash Khorsandi
Brain Tumor Segmentation Using U-net and U-net++ Networks
Seyyed Ali Mortazavi-Zadeh - Alireza Amini - Hamid Soltanian-Zadeh
Brain Tumor Segmentation using Multimodal MRI and Convolutional Neural Network
Nazila Loghmani - Roqaie Moqadam - Armin Allahverdy
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4