0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
SGG-Net: Skeleton and Graph-Based Neural Network Approaches for Grasping Objects
نویسندگان :
AliReza Beigy
1
Farbod Azimmohseni
2
Ali Sabzejou
3
Mehdi Tale Masouleh
4
Ahmad Kalhor
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
کلمات کلیدی :
Robotic،Grasping،Grasp Pose Estimation،Graph Neural Networks،Straight Skeleton
چکیده :
Efficient and robust robotic grasping in cluttered, unstructured environments remains a critical challenge. Existing 6-DoF grasping techniques frequently rely on processing the entire observed point cloud, which can lead to high computational overhead and reduced precision. This paper introduces Skeleton and Graph-based Grasping Network (SGG-Net), an integrated framework that combines geometric skeletonization, implemented through the 3D-StSkel algorithm, with a Graph Neural Network (GNN) to effectively identify optimal grasp poses for robotic manipulation. The proposed method significantly narrows the search space by extracting and focusing on geometrically salient regions, enabling faster and more reliable 6-DoF grasp pose generation. Experimental evaluations demonstrate the approach’s strong performance across benchmark datasets, achieving grasp success rates of 90.74% on DexNet, 81.63% on EGAD, and 97.30% on YCB objects. Furthermore, the method outperformed state-of-the-art approaches on the GraspNet-1Billion dataset, achieving the highest Average Precision (AP) scores for both seen and novel objects. Experimental evaluations on multiple benchmark datasets, including DexNet, EGAD, YCB, and GraspNet-1Billion, show that the proposed technique achieves state-of-the-art grasp success rates and generalizes effectively to diverse and complex object shapes. This approach thus provides a scalable, accurate, and computationally efficient solution for grasp estimation, advancing robotic manipulation capabilities in real-world scenarios.
لیست مقالات
لیست مقالات بایگانی شده
گیمیفیکیشن یک رویکرد نوآورانه جهت کاهش مصرف برق دربخش خانگی
حمید حقرجو - مرضیه زارع زاده کللی - مهدی اشکپور مطلق
An Event-Triggered Robust Data-Driven Predictive Control with Transient Response Improvement
Amir Mehrnoosh - Mohammad Haeri
A Low Power Wideband 0.6-5.4 GHz CG-CS LNA with pMOS-nMOS Configuration and Resistive Feedback
Sajjad Shojaei Baghini - Seyed Ali Samareh TaheriNasab - Samad Sheikhaei
Partitioning-based Graph Signal Denoising via Heat Kernel Smoothing
Mohammadreza Fattahi - Hamid Saeedi-Sourck - Vahid Abootalebi
Bidirectional Isolated DC/DC Dual-Active-Bridge Converters Optimum Soft-Switching Control Method for Electrical Vehicle Applications
Shokoufeh Valadkhani - Mojtaba Mirsalim - Gevork B. Gharehpetian
SchEdge: A Dynamic, Multi-agent, and Scalable Scheduling Simulator for IoT Edge
Ali Hamedi - Amirali Ghaedi - Amin Soltan-beigi - Athena Abdi
Giant Optical Nonreciprocity with Magnetized Epsilon-Near-Zero Materials
Zahra Chamani - Abolghasem Zeidaabadi Nezhad - Mahyar Dehdast - Zaker Hossein Firouzeh
H_∞ Robust Constrained Control of Fuzzy-based Continuous-Time Nonlinear Systems
Mohsen Farbood - Mokhtar Shasadeghi - Taher Niknam - Behrouz Safarinejadian
Mach-Zehnder Interferometer Cell for Realization of Quantum Computer; A Feasibility Study
Mobin Motaharifar - Hassan Kaatuzian
A New High gain Transformerless DC-DC Converter with Low Voltage Stress on Power Switches
Amirreza Bahadori - Ali Nadermohammadi - Mohammad Maalandish - Seyed Hossein Hosseini - Mehran Sabahi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2