0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
SGG-Net: Skeleton and Graph-Based Neural Network Approaches for Grasping Objects
نویسندگان :
AliReza Beigy
1
Farbod Azimmohseni
2
Ali Sabzejou
3
Mehdi Tale Masouleh
4
Ahmad Kalhor
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
کلمات کلیدی :
Robotic،Grasping،Grasp Pose Estimation،Graph Neural Networks،Straight Skeleton
چکیده :
Efficient and robust robotic grasping in cluttered, unstructured environments remains a critical challenge. Existing 6-DoF grasping techniques frequently rely on processing the entire observed point cloud, which can lead to high computational overhead and reduced precision. This paper introduces Skeleton and Graph-based Grasping Network (SGG-Net), an integrated framework that combines geometric skeletonization, implemented through the 3D-StSkel algorithm, with a Graph Neural Network (GNN) to effectively identify optimal grasp poses for robotic manipulation. The proposed method significantly narrows the search space by extracting and focusing on geometrically salient regions, enabling faster and more reliable 6-DoF grasp pose generation. Experimental evaluations demonstrate the approach’s strong performance across benchmark datasets, achieving grasp success rates of 90.74% on DexNet, 81.63% on EGAD, and 97.30% on YCB objects. Furthermore, the method outperformed state-of-the-art approaches on the GraspNet-1Billion dataset, achieving the highest Average Precision (AP) scores for both seen and novel objects. Experimental evaluations on multiple benchmark datasets, including DexNet, EGAD, YCB, and GraspNet-1Billion, show that the proposed technique achieves state-of-the-art grasp success rates and generalizes effectively to diverse and complex object shapes. This approach thus provides a scalable, accurate, and computationally efficient solution for grasp estimation, advancing robotic manipulation capabilities in real-world scenarios.
لیست مقالات
لیست مقالات بایگانی شده
Design and Analysis of Three-Step Cyclic Vernier Time-to-Digital Converter
ُSara Mansouri - Hamidreza Rezaee-Dehsorkh - Nassim Ravanshad
کنترل پیش بین مقاوم توزیع شده برای سیستم های خطی چند عامله
علی سلمانپور - حامد کبریائی
Sampled-data-based Descriptor Observer Design with Aperiodic Measurements for Lithium-ion Batteries in Hybrid Electric Vehicles
Hamid Reza Ahmadzadeh - Masoud Shafiee
PCSA-TMRAM: Precharge Sense Amplifier-Based Ternary MRAM
Mohammad Mahdi Mazaheri - Motahareh BahmanAbadi - Mohammad Hossein Moaiyeri
تحلیل عدم تعادل جریان سه فاز شبکه فشارضعیف توزیع در پی قطع هادی نول متصل به ترانسفورماتور با استفاده از مولفههای متقارن
احمد صالحی دوبخشری
Wideband Rat-race Hybrid Coupler Using Ridge Gap Waveguide Technology
Zahra Akhoondmahdi - Ahmad Bakhtafrouz
Second-order Sliding Mode Control for DC-DC buck converter with input Voltage Ripple Elimination
Maede Azimi - Mehdi Asadi - Adel Zakipour
Revolutionizing Energy Efficiency: A Case Study on Self-supply of Electrical Energy in the Mobarake Steel Industry
Mahdi Shadi - Seyed Mohammad Shobeiry - Mohammad Sadegh Ghazizadeh - Hassan Mardani
Emotion Recognition from EEG Signals During REM Sleep
Asghar Zarei - Ali Mahmoudi
حسگر ضریب شکست مبتنی بر فانو رزونانس در موجبرهای فلز- عایق- فلز، با رزوناتور صفحهای تزویج شده از جانب
تورج هاشمی - نسرین عبدالهی برازجان - عباس علی قنبری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0