0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
SGG-Net: Skeleton and Graph-Based Neural Network Approaches for Grasping Objects
نویسندگان :
AliReza Beigy
1
Farbod Azimmohseni
2
Ali Sabzejou
3
Mehdi Tale Masouleh
4
Ahmad Kalhor
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
کلمات کلیدی :
Robotic،Grasping،Grasp Pose Estimation،Graph Neural Networks،Straight Skeleton
چکیده :
Efficient and robust robotic grasping in cluttered, unstructured environments remains a critical challenge. Existing 6-DoF grasping techniques frequently rely on processing the entire observed point cloud, which can lead to high computational overhead and reduced precision. This paper introduces Skeleton and Graph-based Grasping Network (SGG-Net), an integrated framework that combines geometric skeletonization, implemented through the 3D-StSkel algorithm, with a Graph Neural Network (GNN) to effectively identify optimal grasp poses for robotic manipulation. The proposed method significantly narrows the search space by extracting and focusing on geometrically salient regions, enabling faster and more reliable 6-DoF grasp pose generation. Experimental evaluations demonstrate the approach’s strong performance across benchmark datasets, achieving grasp success rates of 90.74% on DexNet, 81.63% on EGAD, and 97.30% on YCB objects. Furthermore, the method outperformed state-of-the-art approaches on the GraspNet-1Billion dataset, achieving the highest Average Precision (AP) scores for both seen and novel objects. Experimental evaluations on multiple benchmark datasets, including DexNet, EGAD, YCB, and GraspNet-1Billion, show that the proposed technique achieves state-of-the-art grasp success rates and generalizes effectively to diverse and complex object shapes. This approach thus provides a scalable, accurate, and computationally efficient solution for grasp estimation, advancing robotic manipulation capabilities in real-world scenarios.
لیست مقالات
لیست مقالات بایگانی شده
Adaptive Smooth Super Twisting Sliding Mode Control for Parkinson's Tremor Treatment
Reyhaneh Valibeik - ّFatemeh Jahangiri - Mostafa Abedi
MAD-TI: Meta-path Aggregated-Graph Attention Network for Drug Target Interaction Prediction
Reza Shami Tanha - Maryam Sadighian - Arash Zabihian - Mohsen Hooshmand - Mohsen Afsharchi
امنیت سایبری در مواجه با تزریق اطلاعات نادرست به سیستم قدرت هوشمند و ارائه راهکار مقابله
مهدی جمشیدی آفارانی - مهرداد عابدی
Positioning a Moving Target Using Range and Doppler-Rate Measurements with Bi-static Radar
MohammadAmin Latifi - Fereidoon Behnia
ردیابی اهداف کوچک مادون قرمز مبتنی بر فیلتر کالمن بهینهشده با الگوریتم نهنگ و ازدحام ذرات
نازنین بهمن جو - سعید خانکلانتری
Effect of Physical Characteristics on Artificial Neural Network Error Reduction for Indoor Propagation Modeling
SeyedehMounes Eslami - Amir Ahmad Shishegar
Multi-Objective Particle Swarm Optimization Of Spiral Antenna for Microwave Imaging Applications
Mehdi Yousefnia - Jaber Allahgholipor - Ataollah Ebrahimzadeh
Direct model reference adaptive control for depth of hypnosis in anesthesia
Raha Rahimi - Farzaneh Shayegh - Marzieh Kamali
The Design of Fractional I-LQR Controller for Constrained Quadrotor Using Grasshopper Optimization Algorithm
Vahid Safari Dehnavi - Masoud Shafiee
بررسی تاثیر اعمال پوشش مش متال در مقاومت حرارتی و خوردگی سیم فولادی استحکام بالا بعنوان مغزی هادی های پرظرفیت ACSS
فائزه راد - مهرنوش طاهرخانی - ناصر میرشاه ولایتی - عبداله جواهری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4