0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
SGG-Net: Skeleton and Graph-Based Neural Network Approaches for Grasping Objects
نویسندگان :
AliReza Beigy
1
Farbod Azimmohseni
2
Ali Sabzejou
3
Mehdi Tale Masouleh
4
Ahmad Kalhor
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
کلمات کلیدی :
Robotic،Grasping،Grasp Pose Estimation،Graph Neural Networks،Straight Skeleton
چکیده :
Efficient and robust robotic grasping in cluttered, unstructured environments remains a critical challenge. Existing 6-DoF grasping techniques frequently rely on processing the entire observed point cloud, which can lead to high computational overhead and reduced precision. This paper introduces Skeleton and Graph-based Grasping Network (SGG-Net), an integrated framework that combines geometric skeletonization, implemented through the 3D-StSkel algorithm, with a Graph Neural Network (GNN) to effectively identify optimal grasp poses for robotic manipulation. The proposed method significantly narrows the search space by extracting and focusing on geometrically salient regions, enabling faster and more reliable 6-DoF grasp pose generation. Experimental evaluations demonstrate the approach’s strong performance across benchmark datasets, achieving grasp success rates of 90.74% on DexNet, 81.63% on EGAD, and 97.30% on YCB objects. Furthermore, the method outperformed state-of-the-art approaches on the GraspNet-1Billion dataset, achieving the highest Average Precision (AP) scores for both seen and novel objects. Experimental evaluations on multiple benchmark datasets, including DexNet, EGAD, YCB, and GraspNet-1Billion, show that the proposed technique achieves state-of-the-art grasp success rates and generalizes effectively to diverse and complex object shapes. This approach thus provides a scalable, accurate, and computationally efficient solution for grasp estimation, advancing robotic manipulation capabilities in real-world scenarios.
لیست مقالات
لیست مقالات بایگانی شده
A Novel Analytical Tuning Method for Designing of Composite Nonlinear Feedback Control Law in Continuous-time Dynamical Systems
Ali Vazani - Valiollah Ghaffari
A Design Technique For Linear Desensitized LNAs
Masoumeh Sabzi - Mahmoud Kamarei - Yann Mahe - Tchanguiz Razban-Haghighi
Improving Power Grid Operational Resilience During A Tornado Disaster
Mohammadali Nazari - Navid Rezaei - Hassan Bevrani
Radio frequency energy harvesting with multi band rectenna in GSM 1800, UMTS2100 and WiFi
Sahar Bayat - Zahra Bahrami - Asghar Keshtkar
طراحی کنترل کننده امن سیستمهای غیرخطی با استفاده از یادگیری تقویتی و بهینه سازی مجموع مربعات
حسین قلی زاده - احسان رضوی - سجاد پاک خصال - سعید شمقدری
A Vibration Measurement Device for Condition Monitoring of Medium-Voltage Circuit Breakers
Aref Nikraftar Khameneh - Mohammad Hamed Samimi
Fusion of Multi-Level CNN With LBP Features For Facial Emotion Recognition
Ehsan Bahmanabady - Maryam Imani - Hassan Ghassemian
بررسی تاثیر دینامیکی سیستمهای انرژی خورشیدی متصل به شبکه بر بارگذاری ترانسفورماتور و بهبود عملکرد شبکه فشار ضعیف توزیع نیروی برق
مهدی محمدی - رضا خدادی - علی معصومی
بررسی عملکرد چرخاننده موجبری صفحه E با شبیهسازی جفتیده مغناایستایی-الکترومغناطیسی
زهرا عابدان - محمد حسین حسینی
Low-Power Fano Resonance-Based MIM Plasmonic Switch Using Kerr-Type Nonlinear Material
Yousef Karimi - Hassan Kaatuzian
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2