0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
SGG-Net: Skeleton and Graph-Based Neural Network Approaches for Grasping Objects
نویسندگان :
AliReza Beigy
1
Farbod Azimmohseni
2
Ali Sabzejou
3
Mehdi Tale Masouleh
4
Ahmad Kalhor
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
کلمات کلیدی :
Robotic،Grasping،Grasp Pose Estimation،Graph Neural Networks،Straight Skeleton
چکیده :
Efficient and robust robotic grasping in cluttered, unstructured environments remains a critical challenge. Existing 6-DoF grasping techniques frequently rely on processing the entire observed point cloud, which can lead to high computational overhead and reduced precision. This paper introduces Skeleton and Graph-based Grasping Network (SGG-Net), an integrated framework that combines geometric skeletonization, implemented through the 3D-StSkel algorithm, with a Graph Neural Network (GNN) to effectively identify optimal grasp poses for robotic manipulation. The proposed method significantly narrows the search space by extracting and focusing on geometrically salient regions, enabling faster and more reliable 6-DoF grasp pose generation. Experimental evaluations demonstrate the approach’s strong performance across benchmark datasets, achieving grasp success rates of 90.74% on DexNet, 81.63% on EGAD, and 97.30% on YCB objects. Furthermore, the method outperformed state-of-the-art approaches on the GraspNet-1Billion dataset, achieving the highest Average Precision (AP) scores for both seen and novel objects. Experimental evaluations on multiple benchmark datasets, including DexNet, EGAD, YCB, and GraspNet-1Billion, show that the proposed technique achieves state-of-the-art grasp success rates and generalizes effectively to diverse and complex object shapes. This approach thus provides a scalable, accurate, and computationally efficient solution for grasp estimation, advancing robotic manipulation capabilities in real-world scenarios.
لیست مقالات
لیست مقالات بایگانی شده
تعیین آرایش بهینه خطوط جهت کاهش فرسایش یقه پایه های بتنی ناشی از تنشهای باد
میثم پوراحمدی نخلی - حمیدرضا فیروزآبادی
A Transformerless Single-Switch DC-DC Boost Converter Suitable for Renewable Energy Applications
Saed Mahmoud Alilou - Sasan Ahmadi - Mohammad Maalandish - Seyed Hossein Hosseini
Small Target Detection Using an Enhanced Optimization Based Filter and Trajectory Tracking Via Pattern Matching Algorithm
Seyedeh Mahsa Zakipour Bahambari - Saeed Khankalantary
Generalized Robust Control Approach for an Aerial Robot in Grasping Oscillatory Objects
Mirshams Baha - Fariborz Saghafi
A Hybrid Approach for Multimodal Biometric Recognition based on Feature Level Fusion in Reproducing Kernel Hilbert Space
Mohammad Hassan Safavipour - Mohammad Ali Doostari - Hamed Sadjedi
An Improved Version of the SIPO Algorithm with Fast Convergence Speed
Amir Soltany Mahboob - Hadi Shahriar Shahhoseini - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
Deep Learning Meets Explainable AI: A Robust Framework for X-Ray Fracture Detection
Ali Tamizifar - Shakiba Berenjkoub - Mina Amiri
تخمین غلظت ید و زینان در یک نیروگاه هستهای با استفاده از فیلتر کالمن بیرد تحت شرایط مختلف توان راکتور
حسین زحمتکش - حسین الیاسی
Design of a Controllable and State-observable MEMS Nonlinear Resonator Based on the Awl-shaped Serpentine Spring
Ehsan Ranjbar - Amirabolfazl Suratgar
Performance improvement of automated parking by considering road incline and wheel slippage
Ali Anisi - Moosa Ayati - Yassin Riyazi - Ali Asadian
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0