0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
SGG-Net: Skeleton and Graph-Based Neural Network Approaches for Grasping Objects
نویسندگان :
AliReza Beigy
1
Farbod Azimmohseni
2
Ali Sabzejou
3
Mehdi Tale Masouleh
4
Ahmad Kalhor
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
کلمات کلیدی :
Robotic،Grasping،Grasp Pose Estimation،Graph Neural Networks،Straight Skeleton
چکیده :
Efficient and robust robotic grasping in cluttered, unstructured environments remains a critical challenge. Existing 6-DoF grasping techniques frequently rely on processing the entire observed point cloud, which can lead to high computational overhead and reduced precision. This paper introduces Skeleton and Graph-based Grasping Network (SGG-Net), an integrated framework that combines geometric skeletonization, implemented through the 3D-StSkel algorithm, with a Graph Neural Network (GNN) to effectively identify optimal grasp poses for robotic manipulation. The proposed method significantly narrows the search space by extracting and focusing on geometrically salient regions, enabling faster and more reliable 6-DoF grasp pose generation. Experimental evaluations demonstrate the approach’s strong performance across benchmark datasets, achieving grasp success rates of 90.74% on DexNet, 81.63% on EGAD, and 97.30% on YCB objects. Furthermore, the method outperformed state-of-the-art approaches on the GraspNet-1Billion dataset, achieving the highest Average Precision (AP) scores for both seen and novel objects. Experimental evaluations on multiple benchmark datasets, including DexNet, EGAD, YCB, and GraspNet-1Billion, show that the proposed technique achieves state-of-the-art grasp success rates and generalizes effectively to diverse and complex object shapes. This approach thus provides a scalable, accurate, and computationally efficient solution for grasp estimation, advancing robotic manipulation capabilities in real-world scenarios.
لیست مقالات
لیست مقالات بایگانی شده
A 6-12 GHz Wideband RF PIN Diodes based Limiter with 1-dB Insertion Loss and 30-dB Limitation Rate
Sina Rezaeeahvanouee - Javad Ghalibafan
بازسازی تصاویر رادار دهانه مصنوعی با استفاده از نمایش تنک مبتنی بر گروه
محبوبه خدرزاده - صادق صمدی
Lightweight SRAM-PUF Identity Authentication for Edge Devices
Alireza Shafiei - Mehrnaz Monajati
Automated Optic Disc Segmentation in Low-Quality Retinopathy of Prematurity Retinal Images
Abolfazl Karimiyan Abdar - Reza AghaeiZadeh Zoroofi - Naser Shoeibi - Sare Safi - Alireza Ramezani - Homayoun Nikkhah - Hamid Safi - Mohammad Reza Ansari Astaneh
Robust H∞ Control Design for Variable-Speed Wind Turbines Using Bilinear Matrix Inequalities
Hamidreza Javanmardi - Alireza Hamedi - Mahya Rahimzadeh
Low-Cost Clock Distribution Network in Highly Compact Integrated Circuits Against Single Event Transients
Ehsan Borhani nia - Amir Mohammad Hoseini
Impact of Particle Shape on Optical and Electrical Properties of Ultrathin Silicon Solar Cells
Sayyed Reza Mirnaziry - Mohammad Ali Shameli - Leila Yousefi
Design and Analysis of a New Electrically Controllable Brushless Eddy-Current Clutch
Hassan Mohammadi Pirouz - Mohammadreza Baghayipour
Iranian stock market fluctuations: from social news to forecasting models
Maryam Sharifinia - Farzaneh Ghayour Baghbani
Image Inpainting Using AutoEncoder and Guided Selection of Predicted Pixels
Mohammad Hossein Givkashi - Mahshid Hadipour - َArezoo PariZanganeh - Zahra Nabizadeh Shahre-Babak - Nader Karimi - Shadrokh Samavi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2