0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
SGG-Net: Skeleton and Graph-Based Neural Network Approaches for Grasping Objects
نویسندگان :
AliReza Beigy
1
Farbod Azimmohseni
2
Ali Sabzejou
3
Mehdi Tale Masouleh
4
Ahmad Kalhor
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
کلمات کلیدی :
Robotic،Grasping،Grasp Pose Estimation،Graph Neural Networks،Straight Skeleton
چکیده :
Efficient and robust robotic grasping in cluttered, unstructured environments remains a critical challenge. Existing 6-DoF grasping techniques frequently rely on processing the entire observed point cloud, which can lead to high computational overhead and reduced precision. This paper introduces Skeleton and Graph-based Grasping Network (SGG-Net), an integrated framework that combines geometric skeletonization, implemented through the 3D-StSkel algorithm, with a Graph Neural Network (GNN) to effectively identify optimal grasp poses for robotic manipulation. The proposed method significantly narrows the search space by extracting and focusing on geometrically salient regions, enabling faster and more reliable 6-DoF grasp pose generation. Experimental evaluations demonstrate the approach’s strong performance across benchmark datasets, achieving grasp success rates of 90.74% on DexNet, 81.63% on EGAD, and 97.30% on YCB objects. Furthermore, the method outperformed state-of-the-art approaches on the GraspNet-1Billion dataset, achieving the highest Average Precision (AP) scores for both seen and novel objects. Experimental evaluations on multiple benchmark datasets, including DexNet, EGAD, YCB, and GraspNet-1Billion, show that the proposed technique achieves state-of-the-art grasp success rates and generalizes effectively to diverse and complex object shapes. This approach thus provides a scalable, accurate, and computationally efficient solution for grasp estimation, advancing robotic manipulation capabilities in real-world scenarios.
لیست مقالات
لیست مقالات بایگانی شده
Reactive Power Management of PV Systems by Distributed Cooperative Control in Low Voltage Distribution Networks
Saeed Mahdavian Rostami - Mohsen Hamzeh
Shielding factor enhancement method for Bi-stage active shield in SQUID-based Magnetocardiography system
Zeynab Alipour - Fatemeh Esmaili - Faezeh Shanehsazzadeh - Mehdi Fardmanesh
Adaptive fault tolerant neural control of heterogeneous second-order multi-agent systems
Mohammad Hadi Rezaei - Ali Abooee
User Management in Cell-Free Massive MIMO Systems with Limited Fronthaul Capacity
Siminfar Samakoush Galougah - Hamed Masoumi - Mohammad Javad Emadi
Connective Reconstruction-based Novelty Detection
Seyyed Morteza Hashemi - Parvaneh Aliniya - Parvin Razzaghi
Designing a Feedforward Controller Using LMI’s for Disturbance Rejection of Non-Minimum Phase MIMO Systems
Saeedreza Tofighi - Farshad Merrikh-Bayat - Farhad Bayat
بهرهگیری از رویکرد برنامهریزی ریاضیاتی برای حل مسئلهی مجموعه رأس بازخورد، تحت شرط مستقل بودن یا همبندی
فاطمه سلطانی دزکی - حسین فلسفین
Improved Spectral Efficiency of RIS-aided 6G Communication using Deep Learning
Zahra Zahedi - Mehrdad Ardebilipur - Fatemeh Dehrouye
Floquet model of spatiotemporally modulated graphene-based structures
Mahsa Valizadeh - Leila Yousefi - MirFaez Miri
Decoding Trait: Using Dual Transformers to Analyze Gender, Age Range and Personality
ُSaeed Asadian - Mostafa Tanasan - Bijan Vosoughi vahdat
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1