0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
SGG-Net: Skeleton and Graph-Based Neural Network Approaches for Grasping Objects
نویسندگان :
AliReza Beigy
1
Farbod Azimmohseni
2
Ali Sabzejou
3
Mehdi Tale Masouleh
4
Ahmad Kalhor
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
کلمات کلیدی :
Robotic،Grasping،Grasp Pose Estimation،Graph Neural Networks،Straight Skeleton
چکیده :
Efficient and robust robotic grasping in cluttered, unstructured environments remains a critical challenge. Existing 6-DoF grasping techniques frequently rely on processing the entire observed point cloud, which can lead to high computational overhead and reduced precision. This paper introduces Skeleton and Graph-based Grasping Network (SGG-Net), an integrated framework that combines geometric skeletonization, implemented through the 3D-StSkel algorithm, with a Graph Neural Network (GNN) to effectively identify optimal grasp poses for robotic manipulation. The proposed method significantly narrows the search space by extracting and focusing on geometrically salient regions, enabling faster and more reliable 6-DoF grasp pose generation. Experimental evaluations demonstrate the approach’s strong performance across benchmark datasets, achieving grasp success rates of 90.74% on DexNet, 81.63% on EGAD, and 97.30% on YCB objects. Furthermore, the method outperformed state-of-the-art approaches on the GraspNet-1Billion dataset, achieving the highest Average Precision (AP) scores for both seen and novel objects. Experimental evaluations on multiple benchmark datasets, including DexNet, EGAD, YCB, and GraspNet-1Billion, show that the proposed technique achieves state-of-the-art grasp success rates and generalizes effectively to diverse and complex object shapes. This approach thus provides a scalable, accurate, and computationally efficient solution for grasp estimation, advancing robotic manipulation capabilities in real-world scenarios.
لیست مقالات
لیست مقالات بایگانی شده
Incentivizing Peer-to-Peer Energy Trading in Microgrids
Amir Noori - Babak Tavassoli - Alireza Fereidunian
Design of an Optical Current Transformer for High-Voltage Gas-Insulated Switchgear-Part II: Focus on GIS Compartment Design
Reza Babaei - Asghar Akbari - Arash Moradi
Human detection and following by a mobile robot using YOLO structured convolutional neural network
Yasan Majidi - Amir Hossein Hassanabadi
تجزیه وابستگی با استفاده از Q-Learning محافظه کار
امیر زارعی - علیرضا خیاطیان - پیمان ستوده
بررسی ارتباط الگوی خریدوفروش کاربران ارز دیجیتال و حرکات قیمت بازار رمزارز
مهسا علیزاده نیلی - عبدالحسین وهابی - محمدرضا ابوالقاسمی
A Robust Hysteresis-Feedforward Control Approach with High Flexibility for a Single-Inductor Multi-Port DC-DC Converter
Aran Shoaei - Karim Abbaszadeh - Hesamodin Allahyari
A 1.2GHz wide bandwidth integer-N type-I PLL
Javad Tavakoli - Hossein Yaghobi - Samad Sheikhaei
A New High Voltage Gain Non-isolated DC-DC Converter
Ahmadreza Ghanaatian - Reza Takarli - Abolfazl Vahedi
Classifier Fusion Based on Extracted Features Using a Spiking Neural Network from Handwritten Digits
Ali Gholamzade Fard Kazzazi - Malihe Nazari - Fariba Bahrami
Fast and Low Power Modified Carry Look-Ahead Adder
Sanaz Salem - Amir hossein Owji
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2