0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Noninvasive Blood Pressure Classification Based on Photoplethysmography Using Machine Learning Techniques
نویسندگان :
Hanieh Mohammadi
1
Bahram Tarvirdizadeh
2
Khalil Alipour
3
Mohammad Ghamari
4
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- Kettering University
کلمات کلیدی :
blood pressure،photoplethysmograph،feature extraction،feature selection،machine learning
چکیده :
Blood pressure (BP) is one of the four vital signs that offer crucial medical insights into cardiovascular activity. High BP is associated with an increased risk of diseases such as heart attacks and strokes. Traditional BP measurement methods, including invasive and cuff-based devices, have limitations in providing continuous monitoring and can be uncomfortable for individuals. In contrast, wearable devices offer a promising solution for ambulatory care and public health monitoring by enabling frequent BP measurements in non-clinical environments. To meet this requirement, we propose an approach for cuff-less and continuous BP classification using photoplethysmograph (PPG) signals and machine learning (ML) techniques. PPG is a light-based method used to detect variations in blood volume with each heartbeat, offering a noninvasive approach for evaluation. This technology is cost-effective, accessible, and allows for continuous usage. In this research, PPG signals collected from various individuals were subjected to preprocessing and feature extraction. To enhance the performance of ML algorithms and address concerns related to computational complexity and overfitting, feature selection techniques (three techniques) were implemented. These techniques aimed to strategically choose relevant features and subsequently train and evaluate the ML algorithms (eight algorithms) using these selected features. The output of the algorithms is in the form of four classes: normotension (NT), prehypertension (PHT), stage 1 hypertension (S1HT), and stage 2 hypertension (S2HT). The light gradient boosting machine (LightGBM) algorithm, combined with the SelectFromModel feature selection technique, achieved the highest performance, boasting an accuracy of 84.61% on the test data.
لیست مقالات
لیست مقالات بایگانی شده
A reinforcement learning-based control approach for tracking problem of a class of nonlinear systems: Applied to a Single-Link Manipulator
Farshad Rahimi - Sepideh Ziaei - Reza Mahboobi Esfanjani
A High Gain, High IIP3, Perfect Input Matching, Programmable Gain LNA in CMOS Technology
Amirhossein Tajik - Seyedali Samareh Taherinasab - Samad Sheikhaei
Study of Plasmonic Perfect Absorber Using Three Dimensional Silver Double Triangle-Shaped Nanoparticles
Mohammad Reza Rakhshani
Bilabial Consonants Recognition in CV Persian Syllable Based on Computer Vision
Melika Khajeh - Azam Bastanfard - Dariush Amirkhani
A Closed RF Wave-Applicator to Study the Biological Effects of Mobile Communication Systems
SeyedMilad Miri - Karim Mohammadpour-Aghdam
Covert Communication and Secure Transmission in the Presence of Multiple Antenna Untrusted Relay
Mohammad Reza Yari - Paeiz Azmi - Mahyar Ghasedi - Moslem Forouzesh - Hamid Saeedi
الگوریتم تشخیصی برای طبقه بندی سرطان خون لوسمی لنفوسیتی حاد با استفاده از شبکه های عصبی عمیق در یادگیری آنلاین
رضا گودرزی - علی جلالی - امید هاشمی پورتفرشی
A Vibration Measurement Device for Condition Monitoring of Medium-Voltage Circuit Breakers
Aref Nikraftar Khameneh - Mohammad Hamed Samimi
مشاهدهپذیری در فرآیندهای گراف محدود باند بدونجهت و جهتدار با استفاده از تعداد محدودی از مشاهدات
حمیدرضا خسرویان - محمود کریمی
SAR Images Clustering Based on Modified Nonlinear Orthogonal non-Negative Matrix Factorization (NMF)
Mahdi Jowkar dehouei - Soolmaz Khazandi - Yaser Norouzi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2