0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Noninvasive Blood Pressure Classification Based on Photoplethysmography Using Machine Learning Techniques
نویسندگان :
Hanieh Mohammadi
1
Bahram Tarvirdizadeh
2
Khalil Alipour
3
Mohammad Ghamari
4
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- Kettering University
کلمات کلیدی :
blood pressure،photoplethysmograph،feature extraction،feature selection،machine learning
چکیده :
Blood pressure (BP) is one of the four vital signs that offer crucial medical insights into cardiovascular activity. High BP is associated with an increased risk of diseases such as heart attacks and strokes. Traditional BP measurement methods, including invasive and cuff-based devices, have limitations in providing continuous monitoring and can be uncomfortable for individuals. In contrast, wearable devices offer a promising solution for ambulatory care and public health monitoring by enabling frequent BP measurements in non-clinical environments. To meet this requirement, we propose an approach for cuff-less and continuous BP classification using photoplethysmograph (PPG) signals and machine learning (ML) techniques. PPG is a light-based method used to detect variations in blood volume with each heartbeat, offering a noninvasive approach for evaluation. This technology is cost-effective, accessible, and allows for continuous usage. In this research, PPG signals collected from various individuals were subjected to preprocessing and feature extraction. To enhance the performance of ML algorithms and address concerns related to computational complexity and overfitting, feature selection techniques (three techniques) were implemented. These techniques aimed to strategically choose relevant features and subsequently train and evaluate the ML algorithms (eight algorithms) using these selected features. The output of the algorithms is in the form of four classes: normotension (NT), prehypertension (PHT), stage 1 hypertension (S1HT), and stage 2 hypertension (S2HT). The light gradient boosting machine (LightGBM) algorithm, combined with the SelectFromModel feature selection technique, achieved the highest performance, boasting an accuracy of 84.61% on the test data.
لیست مقالات
لیست مقالات بایگانی شده
Gesture recognition of hand movements using mechanomyography
Ashkan Elyasinia - Raheleh Davoodi - Sedighe Dehghani
An Integrated Technical Analysis and Machine Learning Trading Model for Noisy and Volatile Financial Markets
Arvin Esfandiari - Ali Doustmohammadi
Identifying Influential Nodes in Complex Networks by Multiple Attributes Model
Shima Esfandiari - Mostafa Fakhrahmad
Iranian stock market fluctuations: from social news to forecasting models
Maryam Sharifinia - Farzaneh Ghayour Baghbani
Implementation of an Optimized Deep Learning Model to Assess Pediatric Sleep Apnea Severity Using SpO2 Signals on Resource-Limited Microcontrollers
Erfan Mortazavi - Hanieh Mohammadi - Bahram Tarvirdizadeh - Khalil Alipour - Mohammad Ghamari
بیشینه سازی ظرفیت در رله های تمام دوطرفه تک مسیره با در نظر گرفتن اختلالات سخت افزاری
حسین حصاربنی - زهرا کشاورز گندمانی
Impacts of Various Wind Turbine Generators on Transient Recovery Voltage in a Medium Voltage Power Network
Mostafa Heydari - Ali Asghar Razi-Kazemi
Analysis and Simulation of the Formation and dimensions of Gate-Defined Double Quantum Dots
Mahya Mostafavi - Majid Shalchian
جایابی بهینه نیروگاه های مقیاس کوچک و منابع تولید توان راکتیو بمنظور افزایش پایداری ولتاژ شبکه انتقال و فوق توزیع خوزستان
مسعود بشیرپور - کیومرث زمانی - محدثه مولایی - امید سروری
نقش پوشش گیاهی عمودی به همراه اینترنت اشیا در کاهش آلودگی شهری
فرانک صید جانی - سبا کرمی میرعزیزی - هادی اشعریون
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0