0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Noninvasive Blood Pressure Classification Based on Photoplethysmography Using Machine Learning Techniques
نویسندگان :
Hanieh Mohammadi
1
Bahram Tarvirdizadeh
2
Khalil Alipour
3
Mohammad Ghamari
4
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- Kettering University
کلمات کلیدی :
blood pressure،photoplethysmograph،feature extraction،feature selection،machine learning
چکیده :
Blood pressure (BP) is one of the four vital signs that offer crucial medical insights into cardiovascular activity. High BP is associated with an increased risk of diseases such as heart attacks and strokes. Traditional BP measurement methods, including invasive and cuff-based devices, have limitations in providing continuous monitoring and can be uncomfortable for individuals. In contrast, wearable devices offer a promising solution for ambulatory care and public health monitoring by enabling frequent BP measurements in non-clinical environments. To meet this requirement, we propose an approach for cuff-less and continuous BP classification using photoplethysmograph (PPG) signals and machine learning (ML) techniques. PPG is a light-based method used to detect variations in blood volume with each heartbeat, offering a noninvasive approach for evaluation. This technology is cost-effective, accessible, and allows for continuous usage. In this research, PPG signals collected from various individuals were subjected to preprocessing and feature extraction. To enhance the performance of ML algorithms and address concerns related to computational complexity and overfitting, feature selection techniques (three techniques) were implemented. These techniques aimed to strategically choose relevant features and subsequently train and evaluate the ML algorithms (eight algorithms) using these selected features. The output of the algorithms is in the form of four classes: normotension (NT), prehypertension (PHT), stage 1 hypertension (S1HT), and stage 2 hypertension (S2HT). The light gradient boosting machine (LightGBM) algorithm, combined with the SelectFromModel feature selection technique, achieved the highest performance, boasting an accuracy of 84.61% on the test data.
لیست مقالات
لیست مقالات بایگانی شده
Secrecy Sum Rate Analysis and Power Allocation with OSTBC and Artificial Noise for MIMO Systems
Abdolrasoul Sakhaei Gharagezlou - Mahdi Nangir - Nima Imani - Amir Poorfaraj Liqvan
مدل سازی دینامیکی ژنراتور سنکرون آهنربای دائم (PMSG) و تحلیل رفتار آن در شرایط عیب اتصال حلقه استاتور
مجید محرمی - منصور اوجاقی
Monte Carlo Analysis of Process Variations in Metal-Semiconductor-Metal Photodetectors for Nanophotonic Interconnects Application
Arash Qodratnama - Farshad Khunjush - Mohsen Raji
Comparison of the MRT and ZF Precoding in Massive MIMO Systems from Energy Efficiency Viewpoint
Mahdi Nangir - Abdolrasoul Sakhaei Gharagezlou - Nima Imani
Optimizing Dual IMU Sensor Placement for Gait Phase Detection with LSTM Models
Mahya Abedi - Zolfa Anvari - Hamed Ghafarirad - Mohammad Zareinejad
Cloudy: A Pythonic Cloud Simulator
Ahmad Siavashi - Mahmoud Momtazpour
کدینگ فیبوناچی جهش یافته: ارائه یک روش برای افزایش قابلیت اطمینان در شبکههای روی تراشه سهبعدی
مجتبی فرمانی - سروین ناظر جعفری - زهرا شیرمحمدی
A Modified Low Rank Learning Based on Iterative Nuclear Weighting in Ripplet Transform for Denoising MR Images
Nooshin Farhangian - Mansour Nejati Jahromi - Mahdi Nouri
Development of Iterative Learning Control Method Based on Markov Parameters for High-Order Discrete-Time Singular Systems
Meysam Azhdari - Tahereh Binazadeh - Ali Gholami
Modeling of Photo-thermoelectric Current Effects in Phase Change Material based Optical Nano Dipole Antenna Energy Transducer
Daniyal Khosh Maram - Seyed Asad Amirhosseini
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4