0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Noninvasive Blood Pressure Classification Based on Photoplethysmography Using Machine Learning Techniques
نویسندگان :
Hanieh Mohammadi
1
Bahram Tarvirdizadeh
2
Khalil Alipour
3
Mohammad Ghamari
4
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- Kettering University
کلمات کلیدی :
blood pressure،photoplethysmograph،feature extraction،feature selection،machine learning
چکیده :
Blood pressure (BP) is one of the four vital signs that offer crucial medical insights into cardiovascular activity. High BP is associated with an increased risk of diseases such as heart attacks and strokes. Traditional BP measurement methods, including invasive and cuff-based devices, have limitations in providing continuous monitoring and can be uncomfortable for individuals. In contrast, wearable devices offer a promising solution for ambulatory care and public health monitoring by enabling frequent BP measurements in non-clinical environments. To meet this requirement, we propose an approach for cuff-less and continuous BP classification using photoplethysmograph (PPG) signals and machine learning (ML) techniques. PPG is a light-based method used to detect variations in blood volume with each heartbeat, offering a noninvasive approach for evaluation. This technology is cost-effective, accessible, and allows for continuous usage. In this research, PPG signals collected from various individuals were subjected to preprocessing and feature extraction. To enhance the performance of ML algorithms and address concerns related to computational complexity and overfitting, feature selection techniques (three techniques) were implemented. These techniques aimed to strategically choose relevant features and subsequently train and evaluate the ML algorithms (eight algorithms) using these selected features. The output of the algorithms is in the form of four classes: normotension (NT), prehypertension (PHT), stage 1 hypertension (S1HT), and stage 2 hypertension (S2HT). The light gradient boosting machine (LightGBM) algorithm, combined with the SelectFromModel feature selection technique, achieved the highest performance, boasting an accuracy of 84.61% on the test data.
لیست مقالات
لیست مقالات بایگانی شده
Realization of a high-resolution plasmonic refractive index sensor based on double-nanodisk shaped resonators
Leila Hajshahvaladi - Hassan Kaatuzian - Mohammad Danaie - Ghazaleh Nourbakhsh
Security and Privacy Smart Contract Architecture for Energy Trading based on Blockchains
Masoumeh Nazari - Siavash Khorsandi - Jaber Babaki
مدل جامع مدیریت انرژی الکتریکی ریزشبکه مسکونی با استفاده از کنترل پیشبین مبتنی بر مدل
سینا رودنیل - سعید قاسمزاده - کاظم زارع - امیر امینزاده قوی فکر
Monte Carlo Analysis of Process Variations in Metal-Semiconductor-Metal Photodetectors for Nanophotonic Interconnects Application
Arash Qodratnama - Farshad Khunjush - Mohsen Raji
A Comprehensive Analysis Method to Improve the Operation of Transmission Networks from the Perspective of Resonance and Ferroresonance phenomena
MohamadAli Amini - Mehdi SALAY NADERI - Ali Asghar Farrokhi Raad - Gevork B. Gharehpetian
ساخت حسگر مقاومتی بخار اتانول مبتنی بر هتروساختار باریم تیتانات / اکسید روی آلاییده با نانوذرات نقره
محسن طاهری پور - نوید یثربی - شیرین نصراصفهانی - محمد حسین شیخی
Low-Leakage 6T SRAM Cell for In-Memory Computing with High Stability
Deniz Najafi - Behzad Ebrahimi
Numerical study of different pillar shapes using deterministic lateral displacement method for particle separation
Mohammad Mahdi Eskandari Sani - Mahdi Aliverdinia - Mahdi Moghimi Zand
Ultra-Low-Latency QCA Adder Design Using an Innovative Carry Generator
Mohammad Mahdi Cheraghi - Reza Omidi - Ali Azarpeyvand
A Subsurface Microwave Imaging System Based on the Combination of Sub-Band-Subspace Images
Mohammad Ramezaninia - Mohammad Zoofaghari - Abolfazl Gheibollahi - Abbas Ali Heidari
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2