0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Noninvasive Blood Pressure Classification Based on Photoplethysmography Using Machine Learning Techniques
نویسندگان :
Hanieh Mohammadi
1
Bahram Tarvirdizadeh
2
Khalil Alipour
3
Mohammad Ghamari
4
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- Kettering University
کلمات کلیدی :
blood pressure،photoplethysmograph،feature extraction،feature selection،machine learning
چکیده :
Blood pressure (BP) is one of the four vital signs that offer crucial medical insights into cardiovascular activity. High BP is associated with an increased risk of diseases such as heart attacks and strokes. Traditional BP measurement methods, including invasive and cuff-based devices, have limitations in providing continuous monitoring and can be uncomfortable for individuals. In contrast, wearable devices offer a promising solution for ambulatory care and public health monitoring by enabling frequent BP measurements in non-clinical environments. To meet this requirement, we propose an approach for cuff-less and continuous BP classification using photoplethysmograph (PPG) signals and machine learning (ML) techniques. PPG is a light-based method used to detect variations in blood volume with each heartbeat, offering a noninvasive approach for evaluation. This technology is cost-effective, accessible, and allows for continuous usage. In this research, PPG signals collected from various individuals were subjected to preprocessing and feature extraction. To enhance the performance of ML algorithms and address concerns related to computational complexity and overfitting, feature selection techniques (three techniques) were implemented. These techniques aimed to strategically choose relevant features and subsequently train and evaluate the ML algorithms (eight algorithms) using these selected features. The output of the algorithms is in the form of four classes: normotension (NT), prehypertension (PHT), stage 1 hypertension (S1HT), and stage 2 hypertension (S2HT). The light gradient boosting machine (LightGBM) algorithm, combined with the SelectFromModel feature selection technique, achieved the highest performance, boasting an accuracy of 84.61% on the test data.
لیست مقالات
لیست مقالات بایگانی شده
کنترل تطبیقی بازوی رباتی دو درجه آزادی با استفاده از یادگیری گروهی مبتنیبر الگوریتم اکثریت وزندار شده تصادفی
علی چراغی - امیرحسین جراره - سعید شمقدری
جداسازی عروق در تصاویر شبکیه چشم با استفاده از یک روش آستانه گذاری وفقی مبتنی بر اطلاعات محلی و سرتاسری
زهرا نورانی آتشگاه - محمد آراسته - آیدا فولادی وندا
Design and Simulation of a Novel High Sensitive MEMS Microphone Based On a Spring-Supported Circular Diaphragm
Mehdi Pazhooh - Ebrahim Abbaspour-Sani
تخمین کانال متغیربازمان در سیستمهای MIMO – موجمیلیمتری چندکاربره
زهرا معروفی - امیرحسین مولازاده - مهرداد اردبیلیپور
Fast Subdomain Approximation of Brushless Electrical Machines with Spoke-Hub Permanent Magnets
Meisam Pourahmadinakhli - Seyed Hassan Daryanavard - Masoud Jokar-Kohanjani - Sina Soltani
Single-Channel Recursive Speech Separation with Unknown Speaker Count by Mask Estimation
Hadi Alizadeh - Rahil Mahdian Toroghi - Hassan Zareian
روشی نوین مبتنی بر سیمپلکسهای متوالی برای غلبه بر چالشهای حل پخش بار بهینه
فاطمه زاده محمدی - حسین شریف زاده
Two-Stage Stochastic Modeling for Energymnagement and Control of Virtual Power Plants: Addressing Renewable Energy Challenges
Mohammadreza Mousavi Khademi - Mehdi Zareian Jahromi
Mach-Zehnder Interferometer Cell for Realization of Quantum Computer; A Feasibility Study
Mobin Motaharifar - Hassan Kaatuzian
Integration of P2G and Renewables in Stochastic Day-ahead Electricity-Gas Scheduling
Mojtaba Choghaei - Mohammad Kazem Sheikh-El-Eslami
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3