0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Noninvasive Blood Pressure Classification Based on Photoplethysmography Using Machine Learning Techniques
نویسندگان :
Hanieh Mohammadi
1
Bahram Tarvirdizadeh
2
Khalil Alipour
3
Mohammad Ghamari
4
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- Kettering University
کلمات کلیدی :
blood pressure،photoplethysmograph،feature extraction،feature selection،machine learning
چکیده :
Blood pressure (BP) is one of the four vital signs that offer crucial medical insights into cardiovascular activity. High BP is associated with an increased risk of diseases such as heart attacks and strokes. Traditional BP measurement methods, including invasive and cuff-based devices, have limitations in providing continuous monitoring and can be uncomfortable for individuals. In contrast, wearable devices offer a promising solution for ambulatory care and public health monitoring by enabling frequent BP measurements in non-clinical environments. To meet this requirement, we propose an approach for cuff-less and continuous BP classification using photoplethysmograph (PPG) signals and machine learning (ML) techniques. PPG is a light-based method used to detect variations in blood volume with each heartbeat, offering a noninvasive approach for evaluation. This technology is cost-effective, accessible, and allows for continuous usage. In this research, PPG signals collected from various individuals were subjected to preprocessing and feature extraction. To enhance the performance of ML algorithms and address concerns related to computational complexity and overfitting, feature selection techniques (three techniques) were implemented. These techniques aimed to strategically choose relevant features and subsequently train and evaluate the ML algorithms (eight algorithms) using these selected features. The output of the algorithms is in the form of four classes: normotension (NT), prehypertension (PHT), stage 1 hypertension (S1HT), and stage 2 hypertension (S2HT). The light gradient boosting machine (LightGBM) algorithm, combined with the SelectFromModel feature selection technique, achieved the highest performance, boasting an accuracy of 84.61% on the test data.
لیست مقالات
لیست مقالات بایگانی شده
طراحی بهینه چند هدفی کنترل کننده مدلغزشی مرتبه کسری برای سیستم کوادروتور
ابوالفضل انصاریان - جواد عسکری - مرضیه کمالی - محمدجواد محمودآبادی
Study of an Improved Flux Reversal Permanent Magnet Outer-Rotor Motor
Mohammad Reza Sarshar - Mohammad Amin Jalali Kondelaji - Mojtaba Mirsalim
برنامه ریزی مسیر حرکت ربات در بین عابران پیاده با پیشبینی حرکت عابران
ملیکا رضوانی - سمانه حسینی
Optimization of Novel L-shaped Gate All Around Junctionless Field Effect Transistor
Mohammad Tabarsi Sochelmaei - Arash Yazdanpanah Goharrizi
The effect of metal rods in a hybrid plasmonic-photonic crystal cavity design
Leila Hajshahvaladi - Hassan Kaatuzian - Mohammad Danaie - Amirhossein Abdollahi Nohiji
Bidirectional Isolated DC/DC Dual-Active-Bridge Converters Optimum Soft-Switching Control Method for Electrical Vehicle Applications
Shokoufeh Valadkhani - Mojtaba Mirsalim - Gevork B. Gharehpetian
Techno-Economic Dispatch of Distributed Energy Resources for Optimal Grid-Connected Operation of a Microgrid
Selma Cheshmeh khavar - Arya Abdolahi
Breast tumor detection using graphene-based terahertz patch antenna
Zahra Yasaghi - Ayaz Ghorbani - Gholamreza Moradi
کاهش نویز و کلاتر در تصاویر رنگی داپلر اولترسوند
بهینا علیزاده - سید محمود سخایی
A Novel Image Denoising Algorithm Based on Wavelet and Akamatsu Transforms Using Particle Swarm Optimization
Zeinab Pakdaman - Majid Amini-Valashani - Sattar Mirzakuchaki
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2