0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Noninvasive Blood Pressure Classification Based on Photoplethysmography Using Machine Learning Techniques
نویسندگان :
Hanieh Mohammadi
1
Bahram Tarvirdizadeh
2
Khalil Alipour
3
Mohammad Ghamari
4
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- Kettering University
کلمات کلیدی :
blood pressure،photoplethysmograph،feature extraction،feature selection،machine learning
چکیده :
Blood pressure (BP) is one of the four vital signs that offer crucial medical insights into cardiovascular activity. High BP is associated with an increased risk of diseases such as heart attacks and strokes. Traditional BP measurement methods, including invasive and cuff-based devices, have limitations in providing continuous monitoring and can be uncomfortable for individuals. In contrast, wearable devices offer a promising solution for ambulatory care and public health monitoring by enabling frequent BP measurements in non-clinical environments. To meet this requirement, we propose an approach for cuff-less and continuous BP classification using photoplethysmograph (PPG) signals and machine learning (ML) techniques. PPG is a light-based method used to detect variations in blood volume with each heartbeat, offering a noninvasive approach for evaluation. This technology is cost-effective, accessible, and allows for continuous usage. In this research, PPG signals collected from various individuals were subjected to preprocessing and feature extraction. To enhance the performance of ML algorithms and address concerns related to computational complexity and overfitting, feature selection techniques (three techniques) were implemented. These techniques aimed to strategically choose relevant features and subsequently train and evaluate the ML algorithms (eight algorithms) using these selected features. The output of the algorithms is in the form of four classes: normotension (NT), prehypertension (PHT), stage 1 hypertension (S1HT), and stage 2 hypertension (S2HT). The light gradient boosting machine (LightGBM) algorithm, combined with the SelectFromModel feature selection technique, achieved the highest performance, boasting an accuracy of 84.61% on the test data.
لیست مقالات
لیست مقالات بایگانی شده
بررسی تأثیر اجرای سازوکارهای بهره وری انرژی بر ظرفیت سنجی اقتصادی سیستم تأمین برق تجدیدپذیر برای ایستگاه های پایه مخابرات موبایل
بهروز عظیمی امینی - وحید محتشمی - حسین ابوترابی زارچی
Ultrahigh Step-Up Non-Isolated DC-DC Converter Based on Quadratic Converter without Coupled Inductor
Sajad Rostami - Vahid Abbasi - Masoumeh Parastesh
Texture description and Face Recognition using Weighted Local Patch Distance Vectors
Ziba Javanmardi - Farzam Mohebbi - Seyed Saeed Hayati
بهبود پردازش وفقی فضا-زمان (STAP) در سیستمهای رادار هوابرد با استفاده از الگوریتمهای آگاه به تنک بودن (Sparsity) سیستم
علی شیخیان - سارا میهن دوست - نعمت الله عزتی - احسان مصطفی پور
Compare of Machine Learning and Deep Learning Approaches for Human Activity Recognition
Babak Moradi - Mohammad Aghapour - Afshin Shirbandi
تجزیه و تحلیل عملکرد سیستم ناوبری اینرسیایی با استفاده از الگوریتم GAME
نرجس احمدیان - بیژن ذاکری گتابی
بررسی خواص حسگری نانوکامپوزیت پلی آنیلین / اکسید وانادیوم 〖(V〗_2 O_5) نسبت به گاز اتانول در دمای اتاق
محمد حسین سعادتمند - محمد حسین شیخی
Design and Practical Implementation of Internal Model Controller for Temperature Regulation of Thermoelectric Cell
Parastoo Kamali - Sanaz Iman Shayan - Mahshid Mousapour - Fatemeh Abdolsamadi - Salar Zeinali - Sadra Rafatnia
The Effect of Cavity Length on Two-State Quantum Dot Laser Performance
Gholamreza Babaabasi - Mohammad Mohsen Sheikhey - Sara Alaei
طراحی سیستم هوشمند تشخیص سطح مذاب قالب در ماشین ریختهگری مداوم
محمد رضا رشیدی - سید محمد تقی المدرسی - سعیده ذبحی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4