0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Noninvasive Blood Pressure Classification Based on Photoplethysmography Using Machine Learning Techniques
نویسندگان :
Hanieh Mohammadi
1
Bahram Tarvirdizadeh
2
Khalil Alipour
3
Mohammad Ghamari
4
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- Kettering University
کلمات کلیدی :
blood pressure،photoplethysmograph،feature extraction،feature selection،machine learning
چکیده :
Blood pressure (BP) is one of the four vital signs that offer crucial medical insights into cardiovascular activity. High BP is associated with an increased risk of diseases such as heart attacks and strokes. Traditional BP measurement methods, including invasive and cuff-based devices, have limitations in providing continuous monitoring and can be uncomfortable for individuals. In contrast, wearable devices offer a promising solution for ambulatory care and public health monitoring by enabling frequent BP measurements in non-clinical environments. To meet this requirement, we propose an approach for cuff-less and continuous BP classification using photoplethysmograph (PPG) signals and machine learning (ML) techniques. PPG is a light-based method used to detect variations in blood volume with each heartbeat, offering a noninvasive approach for evaluation. This technology is cost-effective, accessible, and allows for continuous usage. In this research, PPG signals collected from various individuals were subjected to preprocessing and feature extraction. To enhance the performance of ML algorithms and address concerns related to computational complexity and overfitting, feature selection techniques (three techniques) were implemented. These techniques aimed to strategically choose relevant features and subsequently train and evaluate the ML algorithms (eight algorithms) using these selected features. The output of the algorithms is in the form of four classes: normotension (NT), prehypertension (PHT), stage 1 hypertension (S1HT), and stage 2 hypertension (S2HT). The light gradient boosting machine (LightGBM) algorithm, combined with the SelectFromModel feature selection technique, achieved the highest performance, boasting an accuracy of 84.61% on the test data.
لیست مقالات
لیست مقالات بایگانی شده
ZnO-based Acoustofluidics: Droplet-based Particle Manipulation
Sara Abbasi - Behdad Barahimi - Sara Darbari - Mohammad Kazem Moravvej-Farshi - Mohammad Zabetian
یک روش اقتصادی برای تعیین مکان بهینه ریکلوزرها در فیدرهای توزیع شعاعی با هدف بهبود قابلیت اطمینان
محمودرضا شاکرمی - میثم دوستی زاده - هومن بسطامی - مهران امیری - ابراهیم شریفی پور - شمس الدین کمالوند
Market-oriented Optimal Control Strategy for an Integrated Energy Storage System and Wind Farm
Sajad Esameili - Mohammad Amini - Amir Khorsandi - Seyed Hamid Fathi - Seyed Hossein Hosseinian - Jafar Millimonfared
Analysis Effect of Arrangement of Winding on the Electromagnetic Performance of HTS Squirrel Cage Induction Motor
Nima Arish - Hamid Yaghobi
Designing a Suitable Antenna and Simple Receiver for Detection of Partial Discharge in the UHF Band
Seyed Hossein Kasaei - Mohammad Hamed Samimi
Enhancing Fetal Brain MRI Segmentation with Adaptive Attention Mechanisms and Residual Blocks
Nazanin Valaee - Vajiheh Sabeti
A Linear Position Sensor Proposal by Development of a Variable Reluctance Linear Resolver
Arman Ramezannezhad - Peyman Naderi - Lieven Vandevelde
A Novel Approach to Pulmonary Embolism Segmentation: Increasing an Attention-based U-Net
Hanie Arabian - Alireza Karimian - Hosein Arabi - Marjan Mansourian
Message Overhead Control Using P-Epidemic Routing Method in Resource-Constrained Heterogeneous DTN
Mohammad Yousef Darmani - Shiva Karimi
مدیریت بهینه توان در یک ساختمان هوشمند حاوی واحدهای ترکیبی برق و حرارت و منابع تولیدپراکنده در حضور ذخیره ساز انرژی
اسماعیل زحمت کشان
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0