0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Noninvasive Blood Pressure Classification Based on Photoplethysmography Using Machine Learning Techniques
نویسندگان :
Hanieh Mohammadi
1
Bahram Tarvirdizadeh
2
Khalil Alipour
3
Mohammad Ghamari
4
1- University of Tehran
2- University of Tehran
3- University of Tehran
4- Kettering University
کلمات کلیدی :
blood pressure،photoplethysmograph،feature extraction،feature selection،machine learning
چکیده :
Blood pressure (BP) is one of the four vital signs that offer crucial medical insights into cardiovascular activity. High BP is associated with an increased risk of diseases such as heart attacks and strokes. Traditional BP measurement methods, including invasive and cuff-based devices, have limitations in providing continuous monitoring and can be uncomfortable for individuals. In contrast, wearable devices offer a promising solution for ambulatory care and public health monitoring by enabling frequent BP measurements in non-clinical environments. To meet this requirement, we propose an approach for cuff-less and continuous BP classification using photoplethysmograph (PPG) signals and machine learning (ML) techniques. PPG is a light-based method used to detect variations in blood volume with each heartbeat, offering a noninvasive approach for evaluation. This technology is cost-effective, accessible, and allows for continuous usage. In this research, PPG signals collected from various individuals were subjected to preprocessing and feature extraction. To enhance the performance of ML algorithms and address concerns related to computational complexity and overfitting, feature selection techniques (three techniques) were implemented. These techniques aimed to strategically choose relevant features and subsequently train and evaluate the ML algorithms (eight algorithms) using these selected features. The output of the algorithms is in the form of four classes: normotension (NT), prehypertension (PHT), stage 1 hypertension (S1HT), and stage 2 hypertension (S2HT). The light gradient boosting machine (LightGBM) algorithm, combined with the SelectFromModel feature selection technique, achieved the highest performance, boasting an accuracy of 84.61% on the test data.
لیست مقالات
لیست مقالات بایگانی شده
Machine Learning-based Fundamental Stock Prediction Using Companies’ Financial Reports
Hossein Rezaei - Kamran Abdi - Mohsen Hooshmand
Distributed Deep Reinforcement Learning for Radio Resource Management in O-RAN
Ahmad Ahmadi Siahpoush - Vahid Shah-Mansouri
تجزیه وابستگی با استفاده از Q-Learning محافظه کار
امیر زارعی - علیرضا خیاطیان - پیمان ستوده
Controllerless SDN: A Novel Architecture to Improve Software-Defined Networks Security
Sayfollah Rohollahi - Siavash Khorsandi
Non-contact Radar Technology and Machine Learning for Automated Sleep Apnea-Hypopnea Syndrome Detection
ُSaman Faridsoltani - Mohaddeseh Sadeghi - Zahra Rahmani - Somayyeh Chamaani
Weighted Fuzzy-Based PSNR for Watermark Visual Quality Evaluation
Maedeh Jamali - Nader Karimi - Shadrokh Samavi
FPGA-Based Multiplier with a New Approximate Full Adder for Error-Resilient Applications
Ali Ranjbar - Elham Esmaeili - Shabnam Rafiei - Nabiollah Shiri
Adaptive synchronous switching of uncompensated open transmission lines Realizing the line’s Parameters, and the pre-arcing interval
Alireza Karimonnafs - Mehdi Vakilian
طراحی سیستم هوشمند تشخیص سطح مذاب قالب در ماشین ریختهگری مداوم
محمد رضا رشیدی - سید محمد تقی المدرسی - سعیده ذبحی
بهبود بازه پویای حسگر گاز اکسید فلزی برای کاربرد در پایش ایمنی محیطهای صنعتی
سمانه محمدباغبان - وحید غفاری نیا
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4