0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Deep Convolutional Neural Network for ADHD Classification using resting-state fMRI
نویسندگان :
MohammadHadi Firouzi
1
Maliheh Ahmadi
2
Kamran Kazemi
3
Mohammad Sadegh Helfroush
4
Ardalan Aarabi
5
1- دانشگاه صنعتی شیراز
2- دانشگاه صنعتی شیراز
3- دانشگاه صنعتی شیراز
4- دانشگاه صنعتی شیراز
5- دانشگاه پیکاردی ژول وررن فرانسه
کلمات کلیدی :
Attention deficit-hyperactivity disorder،Resting-state fMRI،Deep learning،Convolutional neural network
چکیده :
Attention Deficit/Hyperactivity Disorder (ADHD) is the most common diagnosed mental disorder in childhood and may persist into adulthood. ADHD is characterized by symptoms of inattention, hyperactivity and impulsivity. ADHD is a neurodevelopmental disease and widely affects brain functions, thus investigating brain functional connectivity is more effective in the childhood. The exact mechanism of how ADHD affects brain neural connections is not discovered and discriminating children with ADHD from the control group is challenging issue. Deep learning methods demonstrated promising result for diagnosing diseases. Deep learning and neuroimaging tools such as functional resonance imaging (fMRI) was combined in order to differentiate among neural activities of ADHD and TDC patients. This study suggests a deep learning-based procedure that is used for classifying these TDC and ADHD groups. At the first step resting-state fMRI (rsfMRI) data of NYU imaging site from ADHD-200 global competition public dataset were preprocessed for in order to remove artifacts. Next, our algorithm uses functional parcellation for dividing brain regions into 412 parcels. Our algorithm extracts features and classifies ADHD and TDC patients at a same time while some other methods extract features and classify subjects with different algorithms. 5-fold cross-validation is applied to investigate classification results. Our results show that proposed procedure in this study outperforms other methods in state-of-the-art by accuracy of 76.088.
لیست مقالات
لیست مقالات بایگانی شده
P300 Evoked Related Potential Detection Based on Integration of Modified HOG and Convolutional Neural Networks
Pedram Havaei - Elham Mahmoudzadeh - Maryam Zekri
Development of Iterative Learning Control Method Based on Markov Parameters for High-Order Discrete-Time Singular Systems
Meysam Azhdari - Tahereh Binazadeh - Ali Gholami
استفاده از طیفنگاری مادون قرمز نزدیک کارکردی جهت بررسی اثر پشیمانی بر تصمیمگیری خودکنترلی
جاوید بکرانی - سید کمال الدین ستاره دان - عبدالحسین وهابی
یک روش موازی برای تخمین حالت سریع در سیستم های قدرت با ابعاد بزرگ با استفاده از تکنیک جداسازی گراف
بهنام کریم سرمدی - احمد صالحی دوبخشری
بهبود بازه پویای حسگر گاز اکسید فلزی برای کاربرد در پایش ایمنی محیطهای صنعتی
سمانه محمدباغبان - وحید غفاری نیا
Design and Demonstration of a Novel Microfluidic Channel for Trapping Circulating Tumor Cells with Magnetophoresis
Atin Bakhshi - Seyed Ehsan Hosseininasab - Vahid Ghafouri - Mehdi Rahmanian - Majid Badiei Rostami
The Comparison of MXene and Graphene-Based Antennas for 5G/6G Communications
Javad Shokri Seyyedi - Gholamreza Moradi - Reza Sarraf Shirazi - Sepehr Sahab - Abolfazl Ebrahimpour
A Novel Approach to Cheating Prevention in Demand Side Management Algorithms
Farahnaz Haftbaradaran - Ali Akhtari - Massoud Reza Hashemi - Zahra Baharlouei
A Novel Low Torque Ripple Hexagon Biased Flux Doubly Salient Permanent Magnet Motor
Mohammad Amirkhani - Behnam Mohammadian Mosammam - Mojtaba Mirsalim
A Transformerless Single-Switch DC-DC Boost Converter Suitable for Renewable Energy Applications
Saed Mahmoud Alilou - Sasan Ahmadi - Mohammad Maalandish - Seyed Hossein Hosseini
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2