0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Deep Convolutional Neural Network for ADHD Classification using resting-state fMRI
نویسندگان :
MohammadHadi Firouzi
1
Maliheh Ahmadi
2
Kamran Kazemi
3
Mohammad Sadegh Helfroush
4
Ardalan Aarabi
5
1- دانشگاه صنعتی شیراز
2- دانشگاه صنعتی شیراز
3- دانشگاه صنعتی شیراز
4- دانشگاه صنعتی شیراز
5- دانشگاه پیکاردی ژول وررن فرانسه
کلمات کلیدی :
Attention deficit-hyperactivity disorder،Resting-state fMRI،Deep learning،Convolutional neural network
چکیده :
Attention Deficit/Hyperactivity Disorder (ADHD) is the most common diagnosed mental disorder in childhood and may persist into adulthood. ADHD is characterized by symptoms of inattention, hyperactivity and impulsivity. ADHD is a neurodevelopmental disease and widely affects brain functions, thus investigating brain functional connectivity is more effective in the childhood. The exact mechanism of how ADHD affects brain neural connections is not discovered and discriminating children with ADHD from the control group is challenging issue. Deep learning methods demonstrated promising result for diagnosing diseases. Deep learning and neuroimaging tools such as functional resonance imaging (fMRI) was combined in order to differentiate among neural activities of ADHD and TDC patients. This study suggests a deep learning-based procedure that is used for classifying these TDC and ADHD groups. At the first step resting-state fMRI (rsfMRI) data of NYU imaging site from ADHD-200 global competition public dataset were preprocessed for in order to remove artifacts. Next, our algorithm uses functional parcellation for dividing brain regions into 412 parcels. Our algorithm extracts features and classifies ADHD and TDC patients at a same time while some other methods extract features and classify subjects with different algorithms. 5-fold cross-validation is applied to investigate classification results. Our results show that proposed procedure in this study outperforms other methods in state-of-the-art by accuracy of 76.088.
لیست مقالات
لیست مقالات بایگانی شده
A compact 5G MIMO antenna with reduced mutual coupling
Marziyeh Amiri - Ali Ghafoorzadeh-yazdi - Abbas-Ali Heidari
Optimized 5G-MMW Compact Yagi-Uda Antenna Based on Machine Learning Methodology
Alireza Jafarieh - Mahdi Nouri - Hamid Behroozi
طراحی و شبیه سازی یک فراسطح بازتابی با قابلیت تحقق الگوی تشعشعی هم شار با قطبش های خطی و دایروی در باند X مناسب برای ماهواره سنجشی
مجید کریمی پور - ایمان آریانیان
Development of Iterative Learning Control Method Based on Markov Parameters for High-Order Discrete-Time Singular Systems
Meysam Azhdari - Tahereh Binazadeh - Ali Gholami
Robust H∞ Control Design for Variable-Speed Wind Turbines Using Bilinear Matrix Inequalities
Hamidreza Javanmardi - Alireza Hamedi - Mahya Rahimzadeh
Developing a superlens with High Resolution using Quantum Dot Nano-Particles
Amin Monemian Esfahani - Leila Yousefi
Optimization of Fifth Order Band-Pass Ladder Filter and Statistical Analysis of Reverse Problem
Sayyed Ali Alizadeh - Mahmoud Kamarei
Optimal Operation of Lithium-Ion Batteries Considering Degradation Cost in Vehicle-to-Grid Systems
Mahdi Esfandiari - Amin Rafrafi - Abolfazl Pirayesh
Brain Tumor Segmentation using Multimodal MRI and Convolutional Neural Network
Nazila Loghmani - Roqaie Moqadam - Armin Allahverdy
Numerical Study of a Microfluidic-Based Motile Sperm Enrichment Using Sperm Rheotactic Behavior
Mohammadjavad Bouloorchi - Saeed Javadizadeh - Aref Valipour - MirBehrad Mousavi - Majid Badieirostami
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4