0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Deep Convolutional Neural Network for ADHD Classification using resting-state fMRI
نویسندگان :
MohammadHadi Firouzi
1
Maliheh Ahmadi
2
Kamran Kazemi
3
Mohammad Sadegh Helfroush
4
Ardalan Aarabi
5
1- دانشگاه صنعتی شیراز
2- دانشگاه صنعتی شیراز
3- دانشگاه صنعتی شیراز
4- دانشگاه صنعتی شیراز
5- دانشگاه پیکاردی ژول وررن فرانسه
کلمات کلیدی :
Attention deficit-hyperactivity disorder،Resting-state fMRI،Deep learning،Convolutional neural network
چکیده :
Attention Deficit/Hyperactivity Disorder (ADHD) is the most common diagnosed mental disorder in childhood and may persist into adulthood. ADHD is characterized by symptoms of inattention, hyperactivity and impulsivity. ADHD is a neurodevelopmental disease and widely affects brain functions, thus investigating brain functional connectivity is more effective in the childhood. The exact mechanism of how ADHD affects brain neural connections is not discovered and discriminating children with ADHD from the control group is challenging issue. Deep learning methods demonstrated promising result for diagnosing diseases. Deep learning and neuroimaging tools such as functional resonance imaging (fMRI) was combined in order to differentiate among neural activities of ADHD and TDC patients. This study suggests a deep learning-based procedure that is used for classifying these TDC and ADHD groups. At the first step resting-state fMRI (rsfMRI) data of NYU imaging site from ADHD-200 global competition public dataset were preprocessed for in order to remove artifacts. Next, our algorithm uses functional parcellation for dividing brain regions into 412 parcels. Our algorithm extracts features and classifies ADHD and TDC patients at a same time while some other methods extract features and classify subjects with different algorithms. 5-fold cross-validation is applied to investigate classification results. Our results show that proposed procedure in this study outperforms other methods in state-of-the-art by accuracy of 76.088.
لیست مقالات
لیست مقالات بایگانی شده
DWT-Based Epileptic Seizure Detection Using Fuzzy Logic Model with Entropy and Table Lookup Scheme
Alireza Mohammadi - Arvin Esfandyari - Ali Doustmohammadi - Amir Abolfazl Suratgar - Masoud Shafiee
Classification of automotive radar targets using Gray Level Co-occurrence Matrix
Amin AghatabarRoodbary - MohammadHassan Bastani - Fereidoon Behnia
Deep Learning Meets Explainable AI: A Robust Framework for X-Ray Fracture Detection
Ali Tamizifar - Shakiba Berenjkoub - Mina Amiri
Optimization of a three-phase Induction Motor for Electric Vehicles Based on Hook-Jews Optimization Method
Arash Mousaei - Naghi Rostami - Mohammad Bagher Bannae Sharifian
پیشبینی توان تولیدی توربینهای بادی با روشهای حافظه کوتاهمدت طولانی و ماشین تقویتکنندهی گرادیان سبک
سید متین ملکوتی - مهدی منصوری - امیر ریخته گرغیاثی
Jacobian matrix calculation in scattering from dielectric objects using semi-explicit MoM
Fatemeh Mandegari - Leila Ahmadi - Amir Ahmad Shishegar
Deep Learning-Based Imitation of Human Actions for Autonomous Pick-and-Place Tasks
Anoosheh Saadati - Mehdi Tale Masouleh - Ahmad Kalhor
Low Cost Implementation of Neural Networks Based on Stochastic Computing
Hadi Jahanirad - Ahmad Menbari
طبقه بندی سکته مغزی در یک سیستم دو بعدی چند فرکانسی با استفاده از امواج مایکروویو و یادگیری عمیق
محسن مهرانیان - محمدسعید ماجدی - امیررضا عطاری
Energy Efficiency Evaluation of a Line-Start Permanent Magnet Assisted Synchronous Reluctance Motor for Pump Application
Ali Jamali-Fard - Mojtaba Mirsalim
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2