0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Deep Convolutional Neural Network for ADHD Classification using resting-state fMRI
نویسندگان :
MohammadHadi Firouzi
1
Maliheh Ahmadi
2
Kamran Kazemi
3
Mohammad Sadegh Helfroush
4
Ardalan Aarabi
5
1- دانشگاه صنعتی شیراز
2- دانشگاه صنعتی شیراز
3- دانشگاه صنعتی شیراز
4- دانشگاه صنعتی شیراز
5- دانشگاه پیکاردی ژول وررن فرانسه
کلمات کلیدی :
Attention deficit-hyperactivity disorder،Resting-state fMRI،Deep learning،Convolutional neural network
چکیده :
Attention Deficit/Hyperactivity Disorder (ADHD) is the most common diagnosed mental disorder in childhood and may persist into adulthood. ADHD is characterized by symptoms of inattention, hyperactivity and impulsivity. ADHD is a neurodevelopmental disease and widely affects brain functions, thus investigating brain functional connectivity is more effective in the childhood. The exact mechanism of how ADHD affects brain neural connections is not discovered and discriminating children with ADHD from the control group is challenging issue. Deep learning methods demonstrated promising result for diagnosing diseases. Deep learning and neuroimaging tools such as functional resonance imaging (fMRI) was combined in order to differentiate among neural activities of ADHD and TDC patients. This study suggests a deep learning-based procedure that is used for classifying these TDC and ADHD groups. At the first step resting-state fMRI (rsfMRI) data of NYU imaging site from ADHD-200 global competition public dataset were preprocessed for in order to remove artifacts. Next, our algorithm uses functional parcellation for dividing brain regions into 412 parcels. Our algorithm extracts features and classifies ADHD and TDC patients at a same time while some other methods extract features and classify subjects with different algorithms. 5-fold cross-validation is applied to investigate classification results. Our results show that proposed procedure in this study outperforms other methods in state-of-the-art by accuracy of 76.088.
لیست مقالات
لیست مقالات بایگانی شده
Bi-level Bidding Strategy of a Wind Power Producer Considering Local Intraday Demand Response Exchange Market
Ehsan Nokandi - Mostafa Vahedipour-Dahraie - Saeed Reza Goldani
Modeling Data Communications of Wireless Sensor Networks Based on MFM Model and Analyzing Its Stability Using Wave Advanced Model (WAM)
Saeedreza Tofighi - Masoud Shafiee
Precise model extraction for Li-Ion batteries using segmented Columb counting and Kalman filtering
Ali Fotokkiani - Ali Ghanbarian - Amirhossein Esteghamat - Ali Fotowat-Ahmady - Farzad Tahami
Optimized ANFIS-based Control Design Using Genetic Algorithm to Obtain the Vaccination and Isolation Rates for the COVID-19
Zohreh Abbasi - Mohsen Shafieirad - Amir Hossein Amiri Mehra - Iman Zamani
طراحی کنترلکنندهی جدولبندی بهرهی پسخورد خروجی کلیدزن مقاوم برای سیستمهای پارامتر متغیر خطی نامعین چندوجهی پیوسته-زمان
رضا یاوری - سعید شمقدری - آرش صادقزاده
A Novel Method to Estimate Thevenin Equivalent Circuit Using Local Measurements
Pouria Akbarzadeh Aghdam - Hamid Khoshkhoo
Analysis the Effect of Partial Transmission Element on the Performance of Fano Laser
Mohammad Heydari - Mohammadhasan Yavari - Aref Rasoulzadeh Zali
A brief review of methods for improving the performance of virtual synchronous generators under unbalnced conditions
Mohammad Hossein Mousavi - Hassan Moradi CheshmehBeigi
تشخیص انتها به انتها حملات جعل بازپخش صدا به کمک شبکه CNN-ViT جهت بهبود تعمیم پذیری
حسین حجازی - محمد عسگری
A Novel Model for Backcasting the Environmental Sustainability in Iran’s Electricity Supply Mix
Mohammad Saeid Atabaki - Mohammad Mohammadi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4