0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Deep Learning Meets Explainable AI: A Robust Framework for X-Ray Fracture Detection
نویسندگان :
Ali Tamizifar
1
Shakiba Berenjkoub
2
Mina Amiri
3
1- Isfahan university of technology
2- Isfahan university of technology
3- Isfahan university of technology
کلمات کلیدی :
Bone Fracture،FracAtlas،Explainable AI
چکیده :
Bone fractures, commonly diagnosed by X-ray imaging, often pose challenges for accurate detection due to variability in appearance and image quality. This study proposes a three-stage deep learning framework to address these challenges, namely preprocessing, binary classification, and localization. The preprocessing stage enhances image quality and removes extraneous parts of the X-ray images to isolate the primary regions of interest. The Swin Transformer V2 model achieves a classification accuracy of 95.41%, while YOLOv11 attains a mAP50 of 0.606 for fracture localization. To ensure explainability, Gradient-weighted Class Activation Mapping (Grad-CAM) is utilized to visualize the outputs from the last layer before the classifier and highlight the regions most relevant to the model’s decisions. This robust framework not only achieves high accuracy but also offers transparency, making it suitable for clinical applications in fracture detection.
لیست مقالات
لیست مقالات بایگانی شده
Defense Against Spectrum Sensing Data Falsification Attack in Cognitive Radio Networks Using Machine Learning
Nazanin Parhizgar - Ali Jamshidi - Peyman Setoodeh
A Hybrid Computer-aided Diagnosis System For Central Obesity Screening In A Large Sample Of Iranian Children and Adolescents
Amirhossein Koochekian - Morteza Farahi - Hamid Reza Sadr manouchehri Naeini - Mohammad Reza Mohebian - Hamid Reza Marateb - Marjan Mansourian - Roya Kelishadi
HIV Virus States Estimation by Extended Kalman Particle Filter
Meysam Hooshmand - Mahtab Sharifian - Hamid Sharifian - Javad Mahmoudi
Multiphysics Analysis of HTS Transformer utilizing Stainless Steel Stabilizer on Short Circuit Condition
Ashkan Mirzaei Rajeooni - Hossein Heydari - Mohammad Khakroei - Mahdi Rahimi Pirbasti
بهبود تابآوری شبکههای توزیع سنتی در مرحله پیش از حادثه به کمک بازآرایی با الگوریتم ارگانیسم همزیستی
حسین بایسته - رضا شیردره - محمد احمدوند
Attractors Manipulation in Denoising Autoencoders for Robust Phone Recognition
Shaghayegh Reza - Seyyed Ali Seyyedsalehi - Seyyedeh Zohreh Seyyedsalehi
Fragmentation-aware Coordinated Virtual Optical Network Embedding Algorithm Over Elastic Optical Networks
Niusha Sabri Kadijani - Lotfollah Beygi
Double-Input/Double-Output Buck-Zeta Converter
Mahdi Ghavaminejad - Ebrahim Afjei - Masoud Meghdadi
Improved Attention U-Net combined with Conditional Random Field for Ischemic Lesion Segmentation from Magnetic Resonance Images
Ali Rezaei - Asieh Khosravanian - Habibollah Danyali - Kamran Kazemi - Ardalan Aarabi
Brain Tumor Segmentation Using U-net and U-net++ Networks
Seyyed Ali Mortazavi-Zadeh - Alireza Amini - Hamid Soltanian-Zadeh
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1