0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Semi-supervised Deep Reinforcement Learning in Decentralized Multi-Agent Collision Avoidance and Path Planning in a Complex Environment
نویسندگان :
Marzie Parooei
1
Mehdi Tale Masouleh
2
Ahmad Kalhor
3
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
کلمات کلیدی :
Decentralized،Multi Agent،Collision Avoidance،Deep Reinforcement Learning
چکیده :
The problem of path planning and collision avoidance in complex and natural environments is one of the basic requirements of the robotic world, enabling robots to enter social environments. This paper aims to provide a decentralized path planning and collision avoidance method in multi-agent environments. In this method, each agent is a decision-making unit that decides independently from other agents and based on what is in its field of view. In the present paper, classical methods have been used to generate data for training purposes. Models were trained offline by imitating classical methods then semi-supervised methods were used for feature extraction. The results obtained from this method were compared with the Optimal Reciprocal Collision Avoidance (ORCA) method in three environments with different densities and three different indices. The proposed method performed relatively optimally and successfully increased the interaction index while decreasing the computation time. On the other hand, due to the scalable potential of this method, the number of agents could be increased without affecting the computation time.
لیست مقالات
لیست مقالات بایگانی شده
A Low-cost Waveguide Switch Using Glide-symmetric Holey Electromagnetic Band Gap Technology
Mohsen Shafeghati - Elham Sharifi moghaddam - Behzad Ahmadi
A New Approch on Condition Assessment of MV Switchgear based on Thermal Evaluation
Mohsen Taghizadeh Kejani - Seyed Hamid Khalkhali - Ali asghar RaziKazemi
A New High Step-Up Quasi Z-Source DC-DC Converter Using Buffer and Switched Capacitor Techniques
Erfan Meshkizadeh - Ebrahim Afjei - Morteza Kheradmandi
Weak GPS Signal Acquisition Based on Wavelet Transform Denoising and Deep Learning Method
Navid Moradi - Mohsen Nezhadshahbodaghi - Mohammad-Reza Mosavi
مدیریت انرژی یک شبکه هوشمند با ساختار هولاکراسی انرژی شامل مصرفکنندگان خودتولید بر اساس حق انتخاب مبتنی بر ترجیحات اقتصادی، زیستمحیطی و اجتماعی
پیمان افضلی - مسعود رشیدی نژاد - امیر عبداللهی - محمدرضا صالحی زاده - حسین فرهمند
Net Load Forecasting of Household Prosumers Considering Deep Reinforcement Learning
Behzad Motallebi Azar - Rasool Kazemzadeh - Morteza Zare Oskouei - Behnam Mohammadi-Ivatloo
Fully Soft-Switched Quadratic High Step-Up DC-DC Converter with a Single Switch and Low Input Current Ripple for Renewable Energy Applications
Ali Nadermohammadi - Hamed Abdi - Pouya Abolhassani - Seyed Hossein Hosseini - Mehran Sabahi - Naghi Rostami
SchEdge: A Dynamic, Multi-agent, and Scalable Scheduling Simulator for IoT Edge
Ali Hamedi - Amirali Ghaedi - Amin Soltan-beigi - Athena Abdi
External Force Control with Disturbance Rejection for 6 DoF Manipulator
Zahra Bonakdar - Arefe Hamidipour - Hamed Ghafarirad
A Low Power Wideband 0.6-5.4 GHz CG-CS LNA with pMOS-nMOS Configuration and Resistive Feedback
Sajjad Shojaei Baghini - Seyed Ali Samareh TaheriNasab - Samad Sheikhaei
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3