0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Classifier Fusion Based on Extracted Features Using a Spiking Neural Network from Handwritten Digits
نویسندگان :
Ali Gholamzade Fard Kazzazi
1
Malihe Nazari
2
Fariba Bahrami
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه تهران
3- دانشگاه تهران
کلمات کلیدی :
spiking neural network،spike timing dependent plasticity،unsupervised learning،feature extraction،classification،classical classifiers،classifier fusion
چکیده :
The third generation of neural networks, known as spiking neural networks (SNNs), are capable of solving all problems that traditional networks can solve, and computationally, they can perform even more powerfully. Spiking neurons are closer to biological reality. For these reasons, these networks have gained significant attention in recent years. When using these networks for tasks such as pattern recognition or classification, there is no precise method for data classification. In previous works that employed spiking neural networks for classification, each approach generally utilized the unsupervised learning mechanisms that existed in these networks to classify the data through different techniques. Due to the weaknesses in the classification layer of spiking neural networks, we turned to the use of the firing rates of spiking neurons to extract features, which were then passed to classical classifiers. When we used spiking neurons for classification, we achieved an accuracy of 80.17%, and when we added a classical classifier in the third layer of the network, the accuracy increased to 84.48%. Based on the results obtained, the use of a classical classifier layer improved the network's accuracy. Additionally, it increased the execution speed compared to the case where a spiking neuron layer was used in the classification layer, and it reduced the need for extensive hyperparameter tuning of the SNN. Finally, we applied the Decision Template method for classifier fusion, which led to an accuracy of 84.87%. The results show that using classifier fusion methods improves the performance of the network.
لیست مقالات
لیست مقالات بایگانی شده
Hybrid PI-SOSM Controller for Battery and Supercapacitor Integration in Electric Vehicles
Maede Azimi - Ghasem Rezazadeh - Mohsen Hamzeh
Differentiating Brain Connectivity Networks in ADHD and Normal Children using EEG
Roqaie Moqadam - Nazila Loghmani - Alireza Khorrami Moghaddam - Armin Allahverdy
Modeling, estimation, and model predictive control for Covid-19 pandemic with finite security duration vaccine
Abolfazl Delavar - Reza Rahimi Baghbadorani
کنترل سطح آب درام بویلر های نیروگاهی با استفاده از الگوریتم کنترل تطبیقی جدید با در نظر گرفتن کارایی و افزایش عمر شیر کنترلی (مطالعه موردی کنترل سطح آب درام IP نیروگاه سیکل ترکیبی قم)
کیوان زاهدی - محمدحسین هاشمی - محسن منتظری
طراحی روش مبتنی بر آنالیز پوش داده برای ارزیابی عملکرد ایستگاه های فوق توزیع و تعیین سطح مطلوب قابلیت اطمینان سیستم توزیع انرژی الکتریکی
محمد رستگار - زهرا یزدانپناه - محمد جوشکی
طراحی لایه Max-Pooling نوری مجتمع مبتنی بر Ge2Sb2Te5 برای شبکه های عصبی پیچشی نوری
سمانه امیری - دکتر مهدی میری
Improving Wind Turbines Blades Damage detection by using YOLO BoF and BoS
Reza Mohammadi - Saeed Sharifian
Design and Implementation of a TEM Double-ridge Horn Antenna for Ultra-Wideband Applications
Seyed Navid Seyfossadat - Hassan Zakeri - Ahad Tavakoli - Gholamreza Moradi
Power Consumption and I/Q-to-Phase Analysis in Direct Demodulation Approaches
Mir mahdi Safari - Jafar Pourrostam
A Novel Approach to Cheating Prevention in Demand Side Management Algorithms
Farahnaz Haftbaradaran - Ali Akhtari - Massoud Reza Hashemi - Zahra Baharlouei
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4