0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Classifier Fusion Based on Extracted Features Using a Spiking Neural Network from Handwritten Digits
نویسندگان :
Ali Gholamzade Fard Kazzazi
1
Malihe Nazari
2
Fariba Bahrami
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه تهران
3- دانشگاه تهران
کلمات کلیدی :
spiking neural network،spike timing dependent plasticity،unsupervised learning،feature extraction،classification،classical classifiers،classifier fusion
چکیده :
The third generation of neural networks, known as spiking neural networks (SNNs), are capable of solving all problems that traditional networks can solve, and computationally, they can perform even more powerfully. Spiking neurons are closer to biological reality. For these reasons, these networks have gained significant attention in recent years. When using these networks for tasks such as pattern recognition or classification, there is no precise method for data classification. In previous works that employed spiking neural networks for classification, each approach generally utilized the unsupervised learning mechanisms that existed in these networks to classify the data through different techniques. Due to the weaknesses in the classification layer of spiking neural networks, we turned to the use of the firing rates of spiking neurons to extract features, which were then passed to classical classifiers. When we used spiking neurons for classification, we achieved an accuracy of 80.17%, and when we added a classical classifier in the third layer of the network, the accuracy increased to 84.48%. Based on the results obtained, the use of a classical classifier layer improved the network's accuracy. Additionally, it increased the execution speed compared to the case where a spiking neuron layer was used in the classification layer, and it reduced the need for extensive hyperparameter tuning of the SNN. Finally, we applied the Decision Template method for classifier fusion, which led to an accuracy of 84.87%. The results show that using classifier fusion methods improves the performance of the network.
لیست مقالات
لیست مقالات بایگانی شده
Performance improvement of automated parking by considering road incline and wheel slippage
Ali Anisi - Moosa Ayati - Yassin Riyazi - Ali Asadian
True Class-E Design For Inductive Coupling Wireless Power Transfer Applications
Ali Asghar Razavi Haeri - Aminghasem Safarian - Ali Fotowat-Ahmady
Kalman Filter Fusion Based on Interactive Multiple Model for Target Tracking in Wireless Sensor Networks
Zahra Zamani - Behrouz Safarinejadian
Location of Distributed Generation in the Distribution Network concerning of Capacity Credit with the TLBO Optimization Algorithm
Mohammadali Arash - Mohammad Khakroei
A novel wideband low profile Fabry-Perot cavity antenna using single-layer partially reflective surface
Mahtab Ghanbari - Bijan Abbasi arand - Maryam Hesari shermeh
طراحی تزویجگر پهن باند سه استابی فشرده میکرواستریپ برای استفاده در ترکیب کننده توان
صادق حیدری کاهکش - اکرم شیخی
ساخت حسگر مقاومتی گاز سولفید هیدروژن با استفاده از ترکیب نانوذرات اکسید تیتانیوم و گرافن اکسید کاهش یافته
محمد دیانتی - سمانه حامدی
High-Efficiency Soft-Switched Quadratic Ultra-High Step-Up DC-DC Converter with Low Voltage Stress on Semiconductors
Ali Nadermohammadi - Ali Seifi - Hamed Abdi - Pouya Abolhassani - Seyed Hossein Hosseini - Ebrahim Babaei
Dual-Input Single-Output High Step-Up DC-DC Converter for Renewable Energy Applications
Farid Mohammadi - Amir Khorsandi
Learning-Based Routing Policy For Wireless Sensor Networks
Najim Halloum - Yousef Darmani - Ali Ahmadi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2