0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Classifier Fusion Based on Extracted Features Using a Spiking Neural Network from Handwritten Digits
نویسندگان :
Ali Gholamzade Fard Kazzazi
1
Malihe Nazari
2
Fariba Bahrami
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه تهران
3- دانشگاه تهران
کلمات کلیدی :
spiking neural network،spike timing dependent plasticity،unsupervised learning،feature extraction،classification،classical classifiers،classifier fusion
چکیده :
The third generation of neural networks, known as spiking neural networks (SNNs), are capable of solving all problems that traditional networks can solve, and computationally, they can perform even more powerfully. Spiking neurons are closer to biological reality. For these reasons, these networks have gained significant attention in recent years. When using these networks for tasks such as pattern recognition or classification, there is no precise method for data classification. In previous works that employed spiking neural networks for classification, each approach generally utilized the unsupervised learning mechanisms that existed in these networks to classify the data through different techniques. Due to the weaknesses in the classification layer of spiking neural networks, we turned to the use of the firing rates of spiking neurons to extract features, which were then passed to classical classifiers. When we used spiking neurons for classification, we achieved an accuracy of 80.17%, and when we added a classical classifier in the third layer of the network, the accuracy increased to 84.48%. Based on the results obtained, the use of a classical classifier layer improved the network's accuracy. Additionally, it increased the execution speed compared to the case where a spiking neuron layer was used in the classification layer, and it reduced the need for extensive hyperparameter tuning of the SNN. Finally, we applied the Decision Template method for classifier fusion, which led to an accuracy of 84.87%. The results show that using classifier fusion methods improves the performance of the network.
لیست مقالات
لیست مقالات بایگانی شده
FPGA-Based Multiplier with a New Approximate Full Adder for Error-Resilient Applications
Ali Ranjbar - Elham Esmaeili - Shabnam Rafiei - Nabiollah Shiri
Incentive-based Demand Response Economic Model for Peak Shaving Considering Load Serving Entity Profit Maximization
Nasim EslamiNia - Habib RajabiMashhdi
روشی برای انتخاب کُدهای بهینه افزایشی چرخشی برای افزایش تحمل پذیری خطا در شبکه های درون ساختمانیِ شهرهای هوشمند با ملاحظه سربارهای زمانی و توان مصرفی
آرش ابراهیم پور زندی - مهرشاد خسرویانی
Human detection and following by a mobile robot using YOLO structured convolutional neural network
Yasan Majidi - Amir Hossein Hassanabadi
Multi-Objective Concurrent Kernel Scheduling for Multi-GPU Systems
Negar Baradar Alizadeh - Mahmoud Momtazpour
Non-homogeneous interference suppression in OFDM array radars using direct data domain approach
Sima Shariatmadari
Performance analysis under the Independent Fluctuating Two-Ray (IFTR) Fading in RIS-Assisted Millimeter Wave Communications
Maryam Olyaee - Hadi Hashemi - Juan Manuel Romero Jerez
بررسی عملکرد الگوریتم یادگیری تقلیدی در آموزش شبکه عصبی کاملا متصل برای حل مسئله مسیریابی در محیطهای چندعامله
محمد روغنی - سمانه حسینی سمنانی
A Comprehensive Analysis of a Digital Control Strategy for Photovoltaic-Based Single-Phase Grid-Tied Inverter Systems
Soheil Hasani Sangani - Mohamad Reza Moslemnejad - Mojtaba Saeedi - Alireza Jalalitalab - Reza Beiranvand
ساخت حسگر مقاومتی بخار اتانول مبتنی بر هتروساختار باریم تیتانات / اکسید روی آلاییده با نانوذرات نقره
محسن طاهری پور - نوید یثربی - شیرین نصراصفهانی - محمد حسین شیخی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0