0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Classifier Fusion Based on Extracted Features Using a Spiking Neural Network from Handwritten Digits
نویسندگان :
Ali Gholamzade Fard Kazzazi
1
Malihe Nazari
2
Fariba Bahrami
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه تهران
3- دانشگاه تهران
کلمات کلیدی :
spiking neural network،spike timing dependent plasticity،unsupervised learning،feature extraction،classification،classical classifiers،classifier fusion
چکیده :
The third generation of neural networks, known as spiking neural networks (SNNs), are capable of solving all problems that traditional networks can solve, and computationally, they can perform even more powerfully. Spiking neurons are closer to biological reality. For these reasons, these networks have gained significant attention in recent years. When using these networks for tasks such as pattern recognition or classification, there is no precise method for data classification. In previous works that employed spiking neural networks for classification, each approach generally utilized the unsupervised learning mechanisms that existed in these networks to classify the data through different techniques. Due to the weaknesses in the classification layer of spiking neural networks, we turned to the use of the firing rates of spiking neurons to extract features, which were then passed to classical classifiers. When we used spiking neurons for classification, we achieved an accuracy of 80.17%, and when we added a classical classifier in the third layer of the network, the accuracy increased to 84.48%. Based on the results obtained, the use of a classical classifier layer improved the network's accuracy. Additionally, it increased the execution speed compared to the case where a spiking neuron layer was used in the classification layer, and it reduced the need for extensive hyperparameter tuning of the SNN. Finally, we applied the Decision Template method for classifier fusion, which led to an accuracy of 84.87%. The results show that using classifier fusion methods improves the performance of the network.
لیست مقالات
لیست مقالات بایگانی شده
Noninvasive Diagnosis of the Type of Breast Tumor through Artificial Neural Networks
Pooya Tahmasebi - Maryam Mehdizadeh Dastjerdi - Ali Fallah - Saeid Rashidi
بررسی اثر فیدبک نوری بر مشخصه های دینامیکی لیزرهای قفل مد سیلیکونی
محمد شکرپور - محمد حسن یاوری
ساخت حسگر گاز بر پایه ی گرافن اکساید و سیلیکون متخلخل
سیده صفیه رضایی - مینا امیر مزلقانی
شناسایی گرههای مهم سیستم قدرت با استفاده از ابزار شبکههای پیچیده و مرکزیتهای مبتنی بر تشخیص جامعه
سپهر مردانی - علی کریمی - مهران معماری
Parkinson’s Disease Classification Using Continuous Wavelet Transform and Ensemble Convolutional Neural Networks on EEG Signals
Seyed Pedram Monazami - Raheleh Davoodi
The Effect of Cavity Length on Two-State Quantum Dot Laser Performance
Gholamreza Babaabasi - Mohammad Mohsen Sheikhey - Sara Alaei
Bilabial Consonants Recognition in CV Persian Syllable Based on Computer Vision
Melika Khajeh - Azam Bastanfard - Dariush Amirkhani
Transfer Learning Based Method for Human Activity Recognition
Saeedeh Zebhi - Smt Almodarresi - Vahid Abootalebi
مدلسازی، تحلیل و شبیه سازی مبدل رزونانسی LC-LC با قابلیت همزمان جریان ثابت و ولتاژ ثابت در خروجی مناسب برای شارژ باتری
کامران داودی
Finite-time consensus of multi-agent systems via event-triggered control
Mehdi Zamanian - Farzaneh Abdollahi - Seyyed Kamaleddin Yadavar Nikravesh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0