0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
VM Placement in Accelerator-Equipped Data Centers Using Variable-Length Modified Genetic Algorithm
نویسندگان :
Aryo Yarahmadi
1
Mahmoud Momtazpour
2
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Cloud computing, Genetic algorithm, Heterogeneous, VM placement
چکیده :
with the increasing growth in computing demand and the complexity of applications, cloud computing has become very popular in recent years. To cope with the high demand for computing resources, data center providers have introduced various types of hardware accelerators such as GPUs and FPGAs in their environments. Accelerator virtualization is also introduced to overcome the underutilization of GPUs and FPGAs in such environments. However, resource provisioning can be quite challenging in large data centers with heterogeneous setups due to the massive solution space of the resulting VM placement problem. In scenarios where the number of VM requests exceeds the number of available hosts, finding an energy-efficient solution with maximum VM acceptance rate can get difficult for simple heuristics or even metaheuristic methods under tight decision time constraints. The aim of this paper is to tackle the inefficiency of genetic algorithm (GA) in producing good partial schedules in limited decision time. To this end, we introduce a GA-based VM placement method called VLMGA (variable-length modified genetic algorithm). Starting from a limited solution space, VLMGA iteratively tries to find a solution in each sub-space and enlarge the search space until no feasible solution could be found within the specified time frame. Using the proposed technique, the quality of the obtained solution can be greatly improved. Evaluated under real-world workload scenarios, the proposed method achieved 16% improvement on the energy-delay product compared to well-known VM placement methods.
لیست مقالات
لیست مقالات بایگانی شده
Impact of Particle Shape on Optical and Electrical Properties of Ultrathin Silicon Solar Cells
Sayyed Reza Mirnaziry - Mohammad Ali Shameli - Leila Yousefi
Design of a High-Efficiency RF Energy Harvesting System
Saeed Abbasi FallahPour - Shokrollah Karimian - ٍEsfandiar Mehrshahi
تجزیه و تحلیل امواج فیبریلاتور دهلیزی به منظور طبقهبندی AF با استفاده از موجک لیدر
سارا میهن دوست
تولید ریزداپلر راداری بدن انسان با استفاده از آموزش شبکه مولد متقابل کانولوشنال عمیق
مهدی استوان - صادق صمدی - علیرضا کاظمی
T-type L-2L De-Embedding Method for On-Wafer T-model Transmission Line Network
Milad Seyedi - Nasser Masoumi - Samad Sheikhaei
A novel CMRR Enhancement technique in fully-differential Class-AB OTAs
Amirhossein Sabour - Mahsa Ramezan Pour - Mohammad Yavari
Atrial Fibrillation (AF) Detection Using Deep Learning with GAN-based Data Augmentation
Amirhossein Akhoondkazemi - Arash Vashagh - Sayed Jalal Zahabi - Davood Shafie
Millimeter-Wave Imaging System: A Brief Study on System Performance
Behnam Ghandi - Sobhan Dabidian - Sina Zeraatkar - Zahra Kavehvash
بهبود دقت و سرعت روش حداکثر جریان در تشخیص خطاهای آغازین وقایع آبشاری
مجتبی فکری - جواد نیکوکار - گئورک قره پتیان
BLSTM-Convolutional Neural Networks for Respiratory Disease Diagnosis
Mohammad Hassan Khamechian - Mohammad Reza Akbarzadeh Tootoonchi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2