0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
A modified Dempster Shafer approach to classification in surgical skill assessment
نویسندگان :
Arash Iranfar
1
Mohammad Soleymannejad
2
Behzad Moshiri
3
Hamid D. Taghirad
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Skill Assessment،Classification،Evidence combination،Dempster-Shafer theory
چکیده :
Artificial intelligence systems are usually implemented either using machine learning or expert systems. Machine learning methods are usually more accurate and applicable to a broader range of applications. Expert systems, on the other hand, require much less data for training and generate more comprehensible results. These characteristics are typically desired in the fields of surgery and medicine because there isn’t much data available. In order to give a machine’s decisions a deeper level of semantics, it is also advantageous to incorporate a doctor’s expertise into it. Furthermore, it is safer to understand the reasoning behind a machine’s choices. In this paper, a Dempster-Shafer Theory (DST) based expert system is suggested for the task of surgical training skill assessment. An interval-based probabilistic feature analysis was applied to the data to assign values to the mass functions. Zhang’s rule of combination was applied to handle the conflicting evidence in the prediction phase. The performance of the proposed method was compared to another DST classifier, SVM, and XGBoost. Our method outperforms SVM and other DST classifiers, but it is not as precise as XGBoost. By reducing the size of the dataset, the added benefit of using an expert system as opposed to a machine learning method was explored further. The performance of the suggested method is not adversely affected by the size of the dataset, whereas the XGBoost classifier is.
لیست مقالات
لیست مقالات بایگانی شده
The most descriptive surprise definition for brain’s EEG response to visual and auditory oddball tasks
Mohammad Mahdi Kiani - Zahra Mousavi - Hamid Aghajan
بررسی و تحلیل تقابل تلفات و پروفیل ولتاژ به کمک الگوریتم ژنتیک چند هدفه در سیستم های قدرت در حضور سیستم های انتقال قدرت انعطاف پذیر
سجاد احمدنیا - حبیب رجبی مشهدی
Design Investigation of a Broadband Polarization Rotator Using SIW Technology with T-Shaped Slots
Amin Azimi - Mohammad.H Neshati
Outage and Sum-Rate Analysis for mCAP-NOMA in Visible Light Communication Under Users' Mobility
Amir Oshtoudan - Seyed Mohammad Sajad Sadough
ℒ1 Adaptive Control Design Using CMPC: Applied to Single-Link Flexible Joint Manipulator
Hossein Ahmadian - Heidar Ali Talebi - Iman Sharifi
A High Gain, High IIP3, Perfect Input Matching, Programmable Gain LNA in CMOS Technology
Amirhossein Tajik - Seyedali Samareh Taherinasab - Samad Sheikhaei
Human Action Recognition in Still Images Using ConViT
Seyed Rohollah Hosseyni - Sanaz Seyedin - Hassan Taheri
پیچش زمانی عمیق برای انطباق چندگانه سری های زمانی
سیدعلیرضا نوربخش - نرجس الهدی محمدزاده
Multi-Machine Traction Drive Based on Parallel Connected Synchronous Machines
Hassan Mohammadi Pirouz
CatBoost Classifier For DDoS Detection In SDN Using Ryu Controller
Yazdan etdali Mohamadreza Noorifard
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1