0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
A modified Dempster Shafer approach to classification in surgical skill assessment
نویسندگان :
Arash Iranfar
1
Mohammad Soleymannejad
2
Behzad Moshiri
3
Hamid D. Taghirad
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Skill Assessment،Classification،Evidence combination،Dempster-Shafer theory
چکیده :
Artificial intelligence systems are usually implemented either using machine learning or expert systems. Machine learning methods are usually more accurate and applicable to a broader range of applications. Expert systems, on the other hand, require much less data for training and generate more comprehensible results. These characteristics are typically desired in the fields of surgery and medicine because there isn’t much data available. In order to give a machine’s decisions a deeper level of semantics, it is also advantageous to incorporate a doctor’s expertise into it. Furthermore, it is safer to understand the reasoning behind a machine’s choices. In this paper, a Dempster-Shafer Theory (DST) based expert system is suggested for the task of surgical training skill assessment. An interval-based probabilistic feature analysis was applied to the data to assign values to the mass functions. Zhang’s rule of combination was applied to handle the conflicting evidence in the prediction phase. The performance of the proposed method was compared to another DST classifier, SVM, and XGBoost. Our method outperforms SVM and other DST classifiers, but it is not as precise as XGBoost. By reducing the size of the dataset, the added benefit of using an expert system as opposed to a machine learning method was explored further. The performance of the suggested method is not adversely affected by the size of the dataset, whereas the XGBoost classifier is.
لیست مقالات
لیست مقالات بایگانی شده
مدل سازی و شبیه سازی جداکننده پرتو کوانتومی و تداخل گر ماخ زندر کوانتومی
محمد جواد شریفی
Effects of Derating Factor and Minimum Short Circuit Current on the BOP Cable Sizing of a Power Plant
Hossein Zamanpour abyaneh
A Siamese Neural Network for Predicting snoRNA-Disease Association
Milad Besharatifard - Fatemeh Zare-Mirakabad
Perfect Tracking of a Non-minimum Phase MIMO System
Saeedreza Tofighi - Farshad Merrikh-Bayat
Performance Evaluation of a Deep Neural Network Joint Equalizer-Decoder in AWGN-ISI Channels
Zahra Joleini - Ali Jamshidi
طراحی آنتن سرآتش پهن باند مبتنی بر پلاسمون پلاریتونهای سطحی جعلی
فرشاد ارغنده - بیژن عباسی آرند - مریم حصاری شرمه
Energy Efficiency of UAV-based mmWave-mMIMO Systems Using Low-Precision ADCs
Sogol Moshirvaziri - Jamshid َAbouei
بهبود بازه پویای حسگر گاز اکسید فلزی برای کاربرد در پایش ایمنی محیطهای صنعتی
سمانه محمدباغبان - وحید غفاری نیا
Non-isolated Ultra-high Step-Up Quadratic Converter With Low Voltage Stress and Continuous Input Current
Maryam Hajilou - Baharak Akhlaghi - Hosein Farzanehfard
Type-2 fuzzy expert system for management of smart home with combining renewable resources
Ali Beheshtikhoo - Mahdi Pourgholi - Iman Khazaee
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2