0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
A modified Dempster Shafer approach to classification in surgical skill assessment
نویسندگان :
Arash Iranfar
1
Mohammad Soleymannejad
2
Behzad Moshiri
3
Hamid D. Taghirad
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Skill Assessment،Classification،Evidence combination،Dempster-Shafer theory
چکیده :
Artificial intelligence systems are usually implemented either using machine learning or expert systems. Machine learning methods are usually more accurate and applicable to a broader range of applications. Expert systems, on the other hand, require much less data for training and generate more comprehensible results. These characteristics are typically desired in the fields of surgery and medicine because there isn’t much data available. In order to give a machine’s decisions a deeper level of semantics, it is also advantageous to incorporate a doctor’s expertise into it. Furthermore, it is safer to understand the reasoning behind a machine’s choices. In this paper, a Dempster-Shafer Theory (DST) based expert system is suggested for the task of surgical training skill assessment. An interval-based probabilistic feature analysis was applied to the data to assign values to the mass functions. Zhang’s rule of combination was applied to handle the conflicting evidence in the prediction phase. The performance of the proposed method was compared to another DST classifier, SVM, and XGBoost. Our method outperforms SVM and other DST classifiers, but it is not as precise as XGBoost. By reducing the size of the dataset, the added benefit of using an expert system as opposed to a machine learning method was explored further. The performance of the suggested method is not adversely affected by the size of the dataset, whereas the XGBoost classifier is.
لیست مقالات
لیست مقالات بایگانی شده
ارائه چارچوب مدیریت بهینه انرژی و انعطافپذیری برای تجمیعکننده منابع انرژی پراکنده
نیلوفر پورقادری - محمود فتوحی فیروز آباد - معین معینی اقطاعی - میلاد کبیری فر
An Integrated Technical Analysis and Machine Learning Trading Model for Noisy and Volatile Financial Markets
Arvin Esfandiari - Ali Doustmohammadi
The Effect of Optimal PMU Placement in Power System State Estimation considering the Seasonal Load Curve
Seyed Hamed Mir Mohammad Ali Roudaki - Mehrdad Abedi - Iraj Pourkeivani
Extended Phase Shift Control in Dual Active Bridge Converter Considering Magnetizing Inductance of Transformer
Masood Soleimanifard - Ali Yazdian Varjani
Error Probability Analysis of Non-Orthogonal Multiple Access
Rozita Shafie - AliAkbar Tadaion - Zolfa Zeinalpour-Yazdi
Digitizing Analog ECGs: A Deep Learning Pipeline for Converting Historical Records into High-Quality Digital Signals
Sahar Askari - Somayeh Afrasiabi
A Centralized Adaptive PID Control of Telerehabilitation Systems Using Multi-Agent Systems Theory
Mohammadreza Sheykh - Heidar Ali ُTalebi - Iman Sharifi
مدیریت انرژی یک شبکه هوشمند با ساختار هولاکراسی انرژی شامل مصرفکنندگان خودتولید بر اساس حق انتخاب مبتنی بر ترجیحات اقتصادی، زیستمحیطی و اجتماعی
پیمان افضلی - مسعود رشیدی نژاد - امیر عبداللهی - محمدرضا صالحی زاده - حسین فرهمند
Simulation Analysis of Electrode Metal Influence on the Microcavity Effect in Organic Light-Emitting Diodes
Faezeh Rahimi - Mohammad Sedghi - Asghar Gholami
Identifying Singular 2-D Systems Using 1-D Methods
Masoud Shafiee - Kamyar Azarakhsh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3