0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
A modified Dempster Shafer approach to classification in surgical skill assessment
نویسندگان :
Arash Iranfar
1
Mohammad Soleymannejad
2
Behzad Moshiri
3
Hamid D. Taghirad
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Skill Assessment،Classification،Evidence combination،Dempster-Shafer theory
چکیده :
Artificial intelligence systems are usually implemented either using machine learning or expert systems. Machine learning methods are usually more accurate and applicable to a broader range of applications. Expert systems, on the other hand, require much less data for training and generate more comprehensible results. These characteristics are typically desired in the fields of surgery and medicine because there isn’t much data available. In order to give a machine’s decisions a deeper level of semantics, it is also advantageous to incorporate a doctor’s expertise into it. Furthermore, it is safer to understand the reasoning behind a machine’s choices. In this paper, a Dempster-Shafer Theory (DST) based expert system is suggested for the task of surgical training skill assessment. An interval-based probabilistic feature analysis was applied to the data to assign values to the mass functions. Zhang’s rule of combination was applied to handle the conflicting evidence in the prediction phase. The performance of the proposed method was compared to another DST classifier, SVM, and XGBoost. Our method outperforms SVM and other DST classifiers, but it is not as precise as XGBoost. By reducing the size of the dataset, the added benefit of using an expert system as opposed to a machine learning method was explored further. The performance of the suggested method is not adversely affected by the size of the dataset, whereas the XGBoost classifier is.
لیست مقالات
لیست مقالات بایگانی شده
Computational Insights into the Superior Performance of ψ-Graphene in Li-S Batteries: A DFT Study
Donna Rashidi - Maryam Abbasi - Leila Sadeghbeigy - Matin Bakhtavari - Ebrahim Nadimi
Identifying Singular 2-D Systems Using 1-D Methods
Masoud Shafiee - Kamyar Azarakhsh
Fatigue Detection in SSVEP-Based BCIs Using Biomarkers: A Comparative Study
Maedeh Azadi Moghadam - Ali Maleki
SchEdge: A Dynamic, Multi-agent, and Scalable Scheduling Simulator for IoT Edge
Ali Hamedi - Amirali Ghaedi - Amin Soltan-beigi - Athena Abdi
A Time-Distributed Convolutional Long Short-Term Memory for Hand Gesture Recognition
Mehdi Fatan Serj - Mersad Asgari - Bahram Lavi - Domenec Puig Valls - Miguel Angel Garcia
طراحی بهینه ی آرایه ی تُنُک بی افزونگی با فاصله ی ناصحیح میان عناصر
سید محمد حسینی - محمود کریمی
Autonomous Guidance and Control of Satellite Formation Flying Based on Q-Learning with Collision Avoidance Capability
Hamid Mohsennezhad - Mohammadrasoul Kankashvar - Hossein Bolandi
Stabilizing Control System for Synchronizing a Biological Neuron Network Considering Electrical Autapse Effect
Fatemeh Jahangiri - AliAkbar Afzalian - Mashkour Mansouri
کنترل سطح آب درام بویلر های نیروگاهی با استفاده از الگوریتم کنترل تطبیقی جدید با در نظر گرفتن کارایی و افزایش عمر شیر کنترلی (مطالعه موردی کنترل سطح آب درام IP نیروگاه سیکل ترکیبی قم)
کیوان زاهدی - محمدحسین هاشمی - محسن منتظری
A model for probabilistic fault propagation with the approach of effective fanouts in the logic circuits
Esfandiar Esmaieli sartakhti - Yasser Sedaghat - Ali Peiravi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2