0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
A modified Dempster Shafer approach to classification in surgical skill assessment
نویسندگان :
Arash Iranfar
1
Mohammad Soleymannejad
2
Behzad Moshiri
3
Hamid D. Taghirad
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Skill Assessment،Classification،Evidence combination،Dempster-Shafer theory
چکیده :
Artificial intelligence systems are usually implemented either using machine learning or expert systems. Machine learning methods are usually more accurate and applicable to a broader range of applications. Expert systems, on the other hand, require much less data for training and generate more comprehensible results. These characteristics are typically desired in the fields of surgery and medicine because there isn’t much data available. In order to give a machine’s decisions a deeper level of semantics, it is also advantageous to incorporate a doctor’s expertise into it. Furthermore, it is safer to understand the reasoning behind a machine’s choices. In this paper, a Dempster-Shafer Theory (DST) based expert system is suggested for the task of surgical training skill assessment. An interval-based probabilistic feature analysis was applied to the data to assign values to the mass functions. Zhang’s rule of combination was applied to handle the conflicting evidence in the prediction phase. The performance of the proposed method was compared to another DST classifier, SVM, and XGBoost. Our method outperforms SVM and other DST classifiers, but it is not as precise as XGBoost. By reducing the size of the dataset, the added benefit of using an expert system as opposed to a machine learning method was explored further. The performance of the suggested method is not adversely affected by the size of the dataset, whereas the XGBoost classifier is.
لیست مقالات
لیست مقالات بایگانی شده
Underwater Image Quality Assessment via Color and Contrast Analysis
Meysam Ghalyani - Maryam Karimi
Investigation of The Thermal Process Stability Analysis By New BIBO Stability Algorithm of 2-D Discrete Models
Mehdi Mohammadi - Masoud Shafiee - Mahdi Mirshahi
Adaptive fault tolerant neural control of heterogeneous second-order multi-agent systems
Mohammad Hadi Rezaei - Ali Abooee
Stability Analysis of a New Switched SEIAR-Vac-Iso Epidemic Model for the COVID-19
Amir Hossein Amiri Mehra - Mohsen Shafieirad - Zohreh Abbasi - Iman Zamani
A Subsurface Microwave Imaging System Based on the Combination of Sub-Band-Subspace Images
Mohammad Ramezaninia - Mohammad Zoofaghari - Abolfazl Gheibollahi - Abbas Ali Heidari
An Active Inductor-Based Differential Ring VCO with Wide Tuning Range for UWB Applications
Mahdi Alijani - Mohammadmahdi Javanmardi - Vahid Khodadadi - Adib Abrishamifar
مدلسازی ابرشبکههای AlxGa1-xAs)m/(GaAs)n) با استفاده از روش Empirical Tight-Binding
متینه سادات حسینی قیداری - وحیدرضا یزدان پناه
Simultaneous Stabilization of Constrained Singular Time-delay Systems
Emad Jafari - Tahereh Binazadeh
امکان استفاده از پلی آنیلین دوبعدیC3N به عنوان آشکار سازِ گاز استالدهیدِ بازدم در دستگاه های تشخیصِ غیر تهاجمیِ سرطان ریه: مطالعه اصل اولیه
محمد حسین امیدواری - حامد مهدوی نژاد - رزا صفایی اسدآبادی - محمدحسین شیخی
Community Energy Management Using MARL: Synergy of Price-Based and Incentive-Based Demand Response
Mohammad Hashemnezhad - Hamed Delkhosh - Ahmad Shahabi - Mohsen Parsa Moghaddam
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0