0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
A modified Dempster Shafer approach to classification in surgical skill assessment
نویسندگان :
Arash Iranfar
1
Mohammad Soleymannejad
2
Behzad Moshiri
3
Hamid D. Taghirad
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Skill Assessment،Classification،Evidence combination،Dempster-Shafer theory
چکیده :
Artificial intelligence systems are usually implemented either using machine learning or expert systems. Machine learning methods are usually more accurate and applicable to a broader range of applications. Expert systems, on the other hand, require much less data for training and generate more comprehensible results. These characteristics are typically desired in the fields of surgery and medicine because there isn’t much data available. In order to give a machine’s decisions a deeper level of semantics, it is also advantageous to incorporate a doctor’s expertise into it. Furthermore, it is safer to understand the reasoning behind a machine’s choices. In this paper, a Dempster-Shafer Theory (DST) based expert system is suggested for the task of surgical training skill assessment. An interval-based probabilistic feature analysis was applied to the data to assign values to the mass functions. Zhang’s rule of combination was applied to handle the conflicting evidence in the prediction phase. The performance of the proposed method was compared to another DST classifier, SVM, and XGBoost. Our method outperforms SVM and other DST classifiers, but it is not as precise as XGBoost. By reducing the size of the dataset, the added benefit of using an expert system as opposed to a machine learning method was explored further. The performance of the suggested method is not adversely affected by the size of the dataset, whereas the XGBoost classifier is.
لیست مقالات
لیست مقالات بایگانی شده
A Simulation Case Study of THz Reflection Spectroscopy
Mitra Mirsalehi - Zahra Kavehvash - Mehdi Fardmanesh
Experimental Study and Implementation of a Generalized Predictive Controller on Delta Parallel Robot Based on Actuator Identification
Hasan Jalali - Behnam Moradkhani - Hossein Damavandi - Mehdi Tale Masouleh - Ahmad Kalhor
Performance Analysis of an UAV-assisted cognitive D2D communication-based Disaster Response Network
Hossein Mohammadi Firozjae - Javad Zeraatkar Moghaddam - Mehrdad Ardebilipour
Tumor-treating fields orientation effects on breast cancer cells in vitro
Fatemeh Khanmohammadi - Mohammad Sadegh Bank - Majid Badieirostami
Dual-Input Single-Output High Step-Up DC-DC Converter for Renewable Energy Applications
Farid Mohammadi - Amir Khorsandi
T-type L-2L De-Embedding Method for On-Wafer T-model Transmission Line Network
Milad Seyedi - Nasser Masoumi - Samad Sheikhaei
Improved Generative Adversarial Network with Differentiable KS Distance
Siavash Sadeghi Ivrigh - Mohammadreza Hassannejad Bibalan - Asghar Keshtkar
توسعه نرمافزار تخمین عملکرد خطوط انتقال در برابر پدیده صاعقه
سعید شیرمحمدی - رضا شریعتی نسب - کاظم علیشاهی - سامان قهقه زاده
Simulation and Measurement of a Large Reverberation Chamber (LRC) Loaded by Metal Elements
Mojtaba Basravi - ZakerHossein Firouzeh - Hadi Aliakbarian
پیش بینی قیمت انرژی الکتریکی در بازار روز بعد با استفاده از شبکه عصبی مصنوعی تعمیم یافته و با در نظر گرفتن محدودیت سوخت رسانی
حسین صابر - سعید محسنی - رضا پورآقابابا - مصطفی یحیی آبادی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0