0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Hybrid Data-Driven Algorithm for Real-Time Friction Force Estimation in Hydraulic Cylinders
نویسندگان :
Mohamad Amin Jamshidi
1
Mehrbod Zarifi
2
Zolfa Anvari
3
Hamed Ghafarirad
4
Mohammad Zareinejad
5
1- Amirkabir University of Technology (Tehran Polytechnic)
2- Amirkabir University of Technology (Tehran Polytechnic)
3- Amirkabir University of Technology (Tehran Polytechnic)
4- Amirkabir University of Technology (Tehran Polytechnic)
5- Amirkabir University of Technology (Tehran Polytechnic)
کلمات کلیدی :
Fluid power،Hydraulic systems،Analytical and data-driven friction force identification models،Long Short-Term Memory (LSTM) network،Random forests
چکیده :
Hydraulic systems are widely utilized in industrial applications due to their high force generation, precise control, and ability to function in harsh environments. Hydraulic cylinders, as actuators in these systems, apply force and position through the displacement of hydraulic fluid, but their operation is significantly influenced by friction force. Achieving precision in hydraulic cylinders requires an accurate model of friction under various operating conditions. Existing analytical models, often derived from experimental tests, necessitate the identification or estimation of influencing factors but are limited in adaptability and computational efficiency. This research introduces a data-driven, hybrid algorithm based on Long Short-Term Memory (LSTM) networks and Random Forests for nonlinear friction force estimation. The algorithm effectively combines feature detection and estimation processes using training data acquired from an experimental hydraulic test setup. It achieves a consistent and stable model error of less than 10% across diverse operating conditions and external load variations, ensuring robust performance in complex conditions. The computational cost of the algorithm is 1.51 milliseconds per estimation, making it suitable for real-time applications. The proposed method addresses the limitations of analytical models by delivering high precision and computational efficiency. The performance of the algorithm is validated through detailed analysis and experimental results, including direct comparisons with the LuGre model. The comparison highlights that while the LuGre model offers a theoretical foundation for friction modeling, its performance is limited by its inability to dynamically adjust to varying operational conditions of the hydraulic cylinder, further emphasizing the advantages of the proposed hybrid approach in real-time applications.
لیست مقالات
لیست مقالات بایگانی شده
Gesture recognition of hand movements using mechanomyography
Ashkan Elyasinia - Raheleh Davoodi - Sedighe Dehghani
Design of a Retinal Prosthesis Circuit With In-pixel Edge Detection Capability
Zahra Bonesbordi - Sayed Masoud Sayedi
A Novel Low Torque Ripple Hexagon Biased Flux Doubly Salient Permanent Magnet Motor
Mohammad Amirkhani - Behnam Mohammadian Mosammam - Mojtaba Mirsalim
Computational Insights into the Superior Performance of ψ-Graphene in Li-S Batteries: A DFT Study
Donna Rashidi - Maryam Abbasi - Leila Sadeghbeigy - Matin Bakhtavari - Ebrahim Nadimi
نقش پوشش گیاهی عمودی به همراه اینترنت اشیا در کاهش آلودگی شهری
فرانک صید جانی - سبا کرمی میرعزیزی - هادی اشعریون
شبیه سازی رفتار و عملکرد مقره پلیمری 20 کیلوولت با اعمال آلودگی سطحی از نقطه نظر ارزیابی و سنجش جریان خزشی و ارائه الگوی معادل سازی آن
سیدمحمدعلی طباطبائی - حمید جوادی - مسعود عبدالحسین پور - فرامرز قلیچی
Breast Cancer Detection by Time-Reversal Imaging Using Ultra-Wideband Modified Circular Patch Antenna Array
Mohammad Haghpanah - Zahra Ghattan Kashani - Atefeh Khalili Param
Innovative Pathway Optimization for Autonomous Drones in Urban Landscapes Using Integrated Techniques
Seyed Ahmad Abtahi - M.A. Amiri Atashgah - Bahram Tarvirdizadeh - Mohammad Habashiniak
Design of a High-Efficiency RF Energy Harvesting System
Saeed Abbasi FallahPour - Shokrollah Karimian - ٍEsfandiar Mehrshahi
الگوریتم تشخیصی برای طبقه بندی سرطان خون لوسمی لنفوسیتی حاد با استفاده از شبکه های عصبی عمیق در یادگیری آنلاین
رضا گودرزی - علی جلالی - امید هاشمی پورتفرشی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4