0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Hybrid Data-Driven Algorithm for Real-Time Friction Force Estimation in Hydraulic Cylinders
نویسندگان :
Mohamad Amin Jamshidi
1
Mehrbod Zarifi
2
Zolfa Anvari
3
Hamed Ghafarirad
4
Mohammad Zareinejad
5
1- Amirkabir University of Technology (Tehran Polytechnic)
2- Amirkabir University of Technology (Tehran Polytechnic)
3- Amirkabir University of Technology (Tehran Polytechnic)
4- Amirkabir University of Technology (Tehran Polytechnic)
5- Amirkabir University of Technology (Tehran Polytechnic)
کلمات کلیدی :
Fluid power،Hydraulic systems،Analytical and data-driven friction force identification models،Long Short-Term Memory (LSTM) network،Random forests
چکیده :
Hydraulic systems are widely utilized in industrial applications due to their high force generation, precise control, and ability to function in harsh environments. Hydraulic cylinders, as actuators in these systems, apply force and position through the displacement of hydraulic fluid, but their operation is significantly influenced by friction force. Achieving precision in hydraulic cylinders requires an accurate model of friction under various operating conditions. Existing analytical models, often derived from experimental tests, necessitate the identification or estimation of influencing factors but are limited in adaptability and computational efficiency. This research introduces a data-driven, hybrid algorithm based on Long Short-Term Memory (LSTM) networks and Random Forests for nonlinear friction force estimation. The algorithm effectively combines feature detection and estimation processes using training data acquired from an experimental hydraulic test setup. It achieves a consistent and stable model error of less than 10% across diverse operating conditions and external load variations, ensuring robust performance in complex conditions. The computational cost of the algorithm is 1.51 milliseconds per estimation, making it suitable for real-time applications. The proposed method addresses the limitations of analytical models by delivering high precision and computational efficiency. The performance of the algorithm is validated through detailed analysis and experimental results, including direct comparisons with the LuGre model. The comparison highlights that while the LuGre model offers a theoretical foundation for friction modeling, its performance is limited by its inability to dynamically adjust to varying operational conditions of the hydraulic cylinder, further emphasizing the advantages of the proposed hybrid approach in real-time applications.
لیست مقالات
لیست مقالات بایگانی شده
Mountain Gazelle Optimized PID Controller for a MIMO System with External Disturbance
Siavash Shirali - Hamoun Maleki - Hadi Delavari
ساخت یک تراشه میکروسیالی برای شمارش سلول های معلق در مایع با الکترود های مایع
نرگس حسین زاده - پادینا فرخیان - سیدعلی حسینی
طبقهبندی تصاویر سلولی پاپ اسمیر مبتنی بر الگوریتمهای ترتیبی یادگیری جمعی و شبکههای عمیق استخراج ویژگی
زهرا کمالی - محمدصادق هل فروش - کامران کاظمی - مژگان اکبرزاده
Technical and Economic Analysis of Voltage Sags Mitigation Methods
Sina Shakeri - Javad Khajouei - Saeid Esmaeili
Speech Emotion Recognition Using Transfer Learning and Self-Supervised Speech Representation Learning
Marziye Azad - Babak Nasersharif
Single-Item Fashion Recommender: Towards Cross-Domain Recommendations
Seyed Omid Mohammadi - Hossein Bodaghi - Ahmad Kalhor
اولویتبندی کلیدهای قدرت جهت پیادهسازی سیستم پایش وضعیت
محمدرضا قطبالدینی - احمد میرزائی - محمدمهدی منصوری مجومرد
A Boost and Luo Based Non-isolated DC-DC Converter Suitable for DC Link of High Voltage Applications
Ali Meftahpour - Hesam Ehsan - Hossein Gholizadeh - Mohammad Hamed Samimi
The Use of Additive Decomposition and Deep Neural Network for Photovoltaic Power Forecasting
Fariba Dehghan - Mohsen Parsa Moghaddam - Maryam Imani
Direct model reference adaptive control for depth of hypnosis in anesthesia
Raha Rahimi - Farzaneh Shayegh - Marzieh Kamali
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3