0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Solving the inverse problem for EEG signals when learning a new motor task using GRU neural network
نویسندگان :
Milad Khosravi
1
Fariba Bahrami
2
Behzad Moshiri
3
Ahmad Kalhor
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
کلمات کلیدی :
Electroencephalogram (EEG)،GRU،Inverse problem،encoder-decoder
چکیده :
Electroencephalogram (EEG) is a noninvasive technique for recording brain neural activities. It has a poor spatial resolution compared to its temporal resolution. However, the inverse problem has to be solved to find neural sources of brain activity. In recent years artificial neural networks have been increasingly used for solving EEG inverse problem. In these methods, source reconstruction is mostly done sample by sample, while the neural sources are highly interconnected. To consider the temporal dependencies, in this research, a neural network structure based on GRU is presented, which has a low computational cost and is resistant to noise. In this novel structure, GRU networks can extract spatial and temporal information from EEG signals. Also, we employ an encoder-decoder structure which learns a latent-space representation to denoise data. Using simulated data, it has been shown that the presented method performs better than the classical methods on several defined criteria, such as AUC, MLE, and nMSE. Then the trained model was used to solve the inverse problem for real EEG data collected during a new motor task while drawing some shapes with the dominant leg.
لیست مقالات
لیست مقالات بایگانی شده
تشخیص و مقیاس بندی شدت افسردگی براساس روشهای یادگیری ماشین و با استفاده از معیارهای خطی، غیرخطی و آماری محاسبه شده در سیگنالهای الکتروانسفالگرام
پریسا رئوف امامزاده هاشمی - وحید شالچیان - رضا رستمی
Ultra-Compact and Fast All-Optical Half-Subtractor Photonic Crystal Logic Gate
Ehsan Veisi - Mahmood Seifouri - Saeed Olyaee
A Comprehensive Analysis Method to Improve the Operation of Transmission Networks from the Perspective of Resonance and Ferroresonance phenomena
MohamadAli Amini - Mehdi SALAY NADERI - Ali Asghar Farrokhi Raad - Gevork B. Gharehpetian
A New Coupled Inductor based Non-Isolated Dual Input Soft-Switching High Step-up DC-DC Converter
Amirreza Razavi Majarshin - Ebrahim Babaei - Mehran Sabahi
Evaluating the effect of electric vehicle charging station locations on line flows:An analytical approach
Mohammad Hasan Nikkhah - Mahdi Samadi
Finite-Time Bipartite Time-Varying Formation tracking for Heterogeneous Nonlinear Multi-Agent Systems
Mohammad Reza Mehrabi Koushki - Javad Askari - Marzieh Kamali
A Novel Model for Student's Mental Health Monitoring Based on Hard and Soft Data Fusion
Mohammad Fatahi - Masoud Alizadeh - Behzad Moshiri
A Single-Switch High Voltage Gain DC-DC Converter Using Coupled Inductor and Switched Capacitor-Inductor Techniques
Mohammad Salehizadeh - Hasan Rastegar - Farid Mohammadi
Gearbox Fault Detection Using Continuous Wavelet Transform and Vision Transformer (ViT)
Ali Asadian - Yassin Riyazi - Moosa Ayati
An Integrated Technical Analysis and Machine Learning Trading Model for Noisy and Volatile Financial Markets
Arvin Esfandiari - Ali Doustmohammadi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4