0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Solving the inverse problem for EEG signals when learning a new motor task using GRU neural network
نویسندگان :
Milad Khosravi
1
Fariba Bahrami
2
Behzad Moshiri
3
Ahmad Kalhor
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
کلمات کلیدی :
Electroencephalogram (EEG)،GRU،Inverse problem،encoder-decoder
چکیده :
Electroencephalogram (EEG) is a noninvasive technique for recording brain neural activities. It has a poor spatial resolution compared to its temporal resolution. However, the inverse problem has to be solved to find neural sources of brain activity. In recent years artificial neural networks have been increasingly used for solving EEG inverse problem. In these methods, source reconstruction is mostly done sample by sample, while the neural sources are highly interconnected. To consider the temporal dependencies, in this research, a neural network structure based on GRU is presented, which has a low computational cost and is resistant to noise. In this novel structure, GRU networks can extract spatial and temporal information from EEG signals. Also, we employ an encoder-decoder structure which learns a latent-space representation to denoise data. Using simulated data, it has been shown that the presented method performs better than the classical methods on several defined criteria, such as AUC, MLE, and nMSE. Then the trained model was used to solve the inverse problem for real EEG data collected during a new motor task while drawing some shapes with the dominant leg.
لیست مقالات
لیست مقالات بایگانی شده
Temperature-Sensitive Tunable Nanoantenna Based on Phase Change Material (Ge2Sb2Te5) Substrate
Daniyal Khosh Maram - Seyed Asad Amirhosseini
Design of a High-Efficiency Balanced Power Amplifier with 68% Fractional Bandwidth
Fatemeh Mohabati - Marzieh Chegini - Mahmoud Kamarei
طراحی و ساخت چرخاننده سهدرگاهی صفحه E در موجبر باند X
زهرا عابدان - محمد حسین حسینی
طبقه بندی سکته مغزی در یک سیستم دو بعدی چند فرکانسی با استفاده از امواج مایکروویو و یادگیری عمیق
محسن مهرانیان - محمدسعید ماجدی - امیررضا عطاری
Fusion of Multi-Level CNN With LBP Features For Facial Emotion Recognition
Ehsan Bahmanabady - Maryam Imani - Hassan Ghassemian
امنیت سایبری در مواجه با تزریق اطلاعات نادرست به سیستم قدرت هوشمند و ارائه راهکار مقابله
مهدی جمشیدی آفارانی - مهرداد عابدی
Exploring the Impact of Machine Translation on Fake News Detection: A Case Study on Persian Tweets about COVID-19
Masood Hamed Saghayan - Seyedeh Fatemeh Ebrahimi - Mohammad Bahrani
A Single-Switch Single-Inductor High Step-Up DC-DC Converter with Single-Input and Dual-Output Ports
Ali Nadermohammadi - Saed Mahmoud Alilou - Mohammad Maalandish - Seyed Hossein Hosseini - Mehdi Abapour - Kazrm Zare
Vibration Analysis of a High-Speed Switched Reluctance Motor Considering Fast Demagnetization Voltage
Nasrin Majlesi - Amir Rashidi - Morteza Saghaian Nejad
Design and Electromagnetic Analysis of Brushless Salient Pole Switching Flux Synchronous Generator with DC Auxiliary Field Winding for Wind Energy Converter Systems
Seyed Hamed Bibak - Mohammad Hossein Mousavi - Moslem Geravandi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1