0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Solving the inverse problem for EEG signals when learning a new motor task using GRU neural network
نویسندگان :
Milad Khosravi
1
Fariba Bahrami
2
Behzad Moshiri
3
Ahmad Kalhor
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
کلمات کلیدی :
Electroencephalogram (EEG)،GRU،Inverse problem،encoder-decoder
چکیده :
Electroencephalogram (EEG) is a noninvasive technique for recording brain neural activities. It has a poor spatial resolution compared to its temporal resolution. However, the inverse problem has to be solved to find neural sources of brain activity. In recent years artificial neural networks have been increasingly used for solving EEG inverse problem. In these methods, source reconstruction is mostly done sample by sample, while the neural sources are highly interconnected. To consider the temporal dependencies, in this research, a neural network structure based on GRU is presented, which has a low computational cost and is resistant to noise. In this novel structure, GRU networks can extract spatial and temporal information from EEG signals. Also, we employ an encoder-decoder structure which learns a latent-space representation to denoise data. Using simulated data, it has been shown that the presented method performs better than the classical methods on several defined criteria, such as AUC, MLE, and nMSE. Then the trained model was used to solve the inverse problem for real EEG data collected during a new motor task while drawing some shapes with the dominant leg.
لیست مقالات
لیست مقالات بایگانی شده
Adaptive Fault Tolerant Control in Time-Varying Formation of Multi-Agent Systems
Elham Bahrampour - Mohammad Tavazoei
Impact of Loss of Generation (LoG) on Directional Overcurrent Protection in Microgrids
Amir Nedaei - Aref Eskandari
Effective Rate Analysis of MISO Wireless Communication Systems over EGK Fading Channels
ّfereshteh Salimian Rizi - Abolfazl Falahati
TELLM: Advancements in Knowledge Incorporation and Task-specific Enhancements of Large Language Models
Fatemeh Feizi - Amirhossein Hossein Nia - MohammadMahdi Hemmatyar - Fatemeh Rahimi - Farhoud Jafari Kaleibar
A Novel CNN-Based FSK Demodulator With Efficient FPGA Implementation
AmirHossein Sadough - Sina Rezaeeahvanouee
Novel continuous phase DDS model for linear Chirp Signal Simulation in Pulse Compression Radar
Shahin Khakisedigh - Artin Khosravian - Mobin Jamali
Autoencoders for Input Reduction in Interval Type-2 Hyperbolic Fuzzy System Identification and Control: Experimental Results
Behnaz Mohammadi - Nazanin Ildarabadi - Mohammad-R Akbarzadeh-T
A Low-Cost Linearized Analog Resolver-To-DC Converter
Seyed Ali Samareh-TaheriNasab - Mohammad Sadegh KhajueeZadeh - Zahra Nasiri-Gheeidari - Samad Sheikhaei
Robust Control System Design for an Industrial Heavy Duty Gas Turbine under Network-Induced Imperfections
Nasim Ensanseft - Ali Chaibakhsh
طراحی کنترلکننده استروباسکوپ زمان واقعی مبتنی بر هوش مصنوعی برای سیستم های دورانی
مهدی مظفری - سعید جعفری نسب - حامد پورکاوه - سعید شمقدری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0