0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Exploring Graph Biomarkers and Connectivity in Epilepsy Through Graph Learning
نویسندگان :
Ali Khosravipour
1
Sepideh Hajipour Sardouie
2
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
کلمات کلیدی :
Epileptic Seizures،EEG،Brain Connectivity،Power Spectral Density (PSD)،Graph Biomarkers،Graph Learning،Network Measures،Seizure Detection
چکیده :
Epileptic seizures are characterized by abnormal neural activity that disrupts brain connectivity, causing significant and transient changes in interactions between different brain regions. In this paper, we propose two potential graph biomarkers to assist in seizure detection. Our analysis consists of two main parts. First, we construct graphs representing the three distinct seizure phases: preictal, ictal, and postictal, using data from the CHB-MIT EEG dataset. This process involves three steps: calculating the power spectral density (PSD) of the EEG signals as features, learning weighted graphs based on these features, and sparsifying the graphs by retaining only the edges with statistically significant weight changes across the three phases. In the second part, we investigate two key network measures, characteristic path length (CPL) and node strength, assessing their potential as graph biomarkers by analyzing their behavior across the graphs for all three phases. The results show a substantial decrease in both CPL and strength values during the ictal phase compared to the preictal and postictal phases, reflecting impaired integration and disrupted connectivity in the brain during seizures. These findings show that CPL and node strength could be useful graph biomarkers for seizure detection, offering helpful insights for improving epilepsy diagnosis and treatment.
لیست مقالات
لیست مقالات بایگانی شده
کنترل توربین بادی با استفاده از کنترلکننده پیشبین تابعی توسعهیافته
آرمین باقری - محمد حائری
Active Data Fusion in Deep Neural Networks via Separation Index
Movahed Jamshidi - Ahmad Kalhor - Abdol-Hossein Vahabie
Flexible Microgrid Scheduling with the Presence of Renewable Energy Resources
Mahdi Rahimi - Fatemeh Jahanbani Ardakani - Ali Reza Rahimi
Electronic properties of 2D perovskites NMA2PbBr4 and NEA2PbBr4 for PeLED applications: first principle approach
Samad Shokouhi - Seyedeh bita Saadatmand - Vahid Ahmadi
Hybrid PI-SOSM Controller for Battery and Supercapacitor Integration in Electric Vehicles
Maede Azimi - Ghasem Rezazadeh - Mohsen Hamzeh
Experimental Study on Automatically Assembling Custom Catering Packages With a 3-DOF Delta Robot Using Deep Learning Methods
Reihaneh Yourdkhani - Arash Tavoosian - Navid Asadi Khomami - Mehdi Tale Masouleh
شناسایی گرههای مهم سیستم قدرت با استفاده از ابزار شبکههای پیچیده و مرکزیتهای مبتنی بر تشخیص جامعه
سپهر مردانی - علی کریمی - مهران معماری
HFO detection from iEEG signals in epilepsy using time-trained graphs and Deep Graph Convolutional Neural Network
Fatemeh Gharebaghi asl - Sepideh Hajipour Sardouie
Wind-Robust Sea-Ice Discrimination from Sentinel-1 Texture Features
Parsa Shamsaddini - Ahmad Keshavarz - Stefano Zecchetto
ارائه چارچوب مدیریت بهینه انرژی و انعطافپذیری برای تجمیعکننده منابع انرژی پراکنده
نیلوفر پورقادری - محمود فتوحی فیروز آباد - معین معینی اقطاعی - میلاد کبیری فر
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4