0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Exploring Graph Biomarkers and Connectivity in Epilepsy Through Graph Learning
نویسندگان :
Ali Khosravipour
1
Sepideh Hajipour Sardouie
2
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
کلمات کلیدی :
Epileptic Seizures،EEG،Brain Connectivity،Power Spectral Density (PSD)،Graph Biomarkers،Graph Learning،Network Measures،Seizure Detection
چکیده :
Epileptic seizures are characterized by abnormal neural activity that disrupts brain connectivity, causing significant and transient changes in interactions between different brain regions. In this paper, we propose two potential graph biomarkers to assist in seizure detection. Our analysis consists of two main parts. First, we construct graphs representing the three distinct seizure phases: preictal, ictal, and postictal, using data from the CHB-MIT EEG dataset. This process involves three steps: calculating the power spectral density (PSD) of the EEG signals as features, learning weighted graphs based on these features, and sparsifying the graphs by retaining only the edges with statistically significant weight changes across the three phases. In the second part, we investigate two key network measures, characteristic path length (CPL) and node strength, assessing their potential as graph biomarkers by analyzing their behavior across the graphs for all three phases. The results show a substantial decrease in both CPL and strength values during the ictal phase compared to the preictal and postictal phases, reflecting impaired integration and disrupted connectivity in the brain during seizures. These findings show that CPL and node strength could be useful graph biomarkers for seizure detection, offering helpful insights for improving epilepsy diagnosis and treatment.
لیست مقالات
لیست مقالات بایگانی شده
تشخیص حالت عادی و غیرعادی شبکه برق هوشمند با استفاده از شبکه عصبی مصنوعی
محمد گنج خانی - علی عباسپورطهرانی فرد - سجاد فتاحیان دهکردی - محمد غلامی
Improved Equivalent Input Disturbance Control of Nonlinear Aeropendulum System Using Data-Driven Approach
Mohammad Hossein Bayati - Arman Marzban - Mahsan Tavakoli-Kakhki - Ali Naseh
Online Estimation of Power System Inertia Using Electromechanical Oscillation Parameters with High Penetration of Renewables
Shwan Sheikhahmadi - Ali Hesami Naghshbandy - Ayda Faraji
تدوین استراتژی تعمیرات و نگهداری مبتنی بر قابلیت اطمینان در شبکه ی انتقال قدرت
سید سینا طاهری اطاقسرا - مسعود اصغری قراخیلی
A model to measure cyber security maturity at the national level
Mahdi Omrani - Masoud Shafiee - Siavash Khorsandi
مدل سازی سینگولار گسسته زمان یک سیستم الکتریکی و کنترل آن به روش الگوریتم یادگیری تکرارشونده
علی غلامی بنادکوکی - طاهره بینازاده
An SINR Maximization Approach for STAR-RIS-assisted Integrated Sensing and Communication Networks
Samira Arab Ameri - Kamal Mohamedpour - Mohammad Javad Azizipour
Dominant Control Set Selection in Clustered Complex Brain Network
Sana Motallebi - Mohammad Javad Yazdanpanah - Abdol-Hossein Vahabie
Scene Understanding in Pick-and-Place Tasks: Analyzing Transformations Between Initial and Final Scenes
Seraj Ghasemi - Hamed Hosseini - MohammadHossein Koosheshi - Mehdi Tale Masouleh - Ahmad Kalhor
بررسی اثر فیدبک نوری بر مشخصه های دینامیکی لیزرهای قفل مد سیلیکونی
محمد شکرپور - محمد حسن یاوری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4